رکورد قبلیرکورد بعدی

" Convex optimization in signal processing and communications / "


Document Type : BL
Record Number : 1011681
Doc. No : b766051
Title & Author : Convex optimization in signal processing and communications /\ edited by Daniel P. Palomar and Yonina C. Eldar.
Publication Statement : Cambridge ;New York :: Cambridge University Press,, ©2010.
Page. NO : 1 online resource (xiv, 498 pages) :: illustrations
ISBN : 0511689004
: : 0511689756
: : 0511690495
: : 0511691238
: : 0511692358
: : 0511804458
: : 1107208122
: : 1282653261
: : 6612653264
: : 9780511689000
: : 9780511689758
: : 9780511690495
: : 9780511691232
: : 9780511692352
: : 9780511804458
: : 9781107208124
: : 9781282653269
: : 9786612653261
: 0521762227
: 9780521762229
Bibliographies/Indexes : Includes bibliographical references and index.
Contents : 1. Automatic code generation for real-time convex optimization / Jacob Mattingley and Stephen Boyd -- 2. Gradient-based algorithmswith applications to signal-recovery problems / Amir Beck and Marc Teboulle -- 3. Graphical models of autoregressive processes / Jitkomut Songsiri, Joachim Dahl and Lieven Vandenberghe -- 4. SDP relaxation of homogeneous quadratic optimization: approximation bounds and applications / Zhi-Quan Luo and Tsung-Hui Chang -- 5. Probabilistic analysis of semidefinite relaxation detectors for multiple-input, multiple-output systems / Anthony Man-Cho So and Yinyu Ye -- 6. Semidefinite programming, matrix decomposition, and radar code design / Yongwei Huang, Antonio De Maio and Shuzhong Zhang -- 7. Convex analysis for non-negative blind source separation with application in imaging / Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi and Vue Wang -- 8. Optimization techniques in modern sampling theory / Tomer Michaeli and Yonina C. Eldar -- 9. Robust broadband adaptive beamforming using convex optimization / Michael Rubsamen, Amr El-Keyi, Alex B. Gershman and Thia Kirubarajan -- 10. Cooperative distributed multi-agentoptimization / Angelia Nedic and Asuman Ozdaglar -- 11. Competitive optimization of cognitive radio MIMO systems via game theory / Gesualso Scutari, Daniel P. Palomar and Sergio Barbarossa -- 12. Nash equilibria: the variational approach / Francisco Facchinei and Jong-Shi Pang.
Abstract : Over the past two decades there have been significant advances in the field of optimization. In particular, convex optimization has emerged as a powerful signal processing tool, and the variety of applications continues to grow rapidly. This book, written by a team of leading experts, sets out the theoretical underpinnings of the subject and provides tutorials on a wide range of convex optimization applications. Emphasis throughout is on cutting-edge research and on formulating problems in convex form, making this an ideal textbook for advanced graduate courses and a useful self-study guide. Topics covered range from automatic code generation, graphical models, and gradient-based algorithms for signal recovery, to semidefinite programming (SDP) relaxation and radar waveform design via SDP. It also includes blind source separation for image processing, robust broadband beamforming, distributed multi-agent optimization for networked systems, cognitive radio systems via game theory, and the variational inequality approach for Nash equilibrium solutions.
Subject : Convex functions.
Subject : Mathematical optimization.
Subject : Signal processing.
Subject : COMPUTERS-- Information Theory.
Subject : Convex functions.
Subject : Mathematical optimization.
Subject : Signal processing.
Subject : TECHNOLOGY ENGINEERING-- Signals Signal Processing.
Dewey Classification : ‭621.3822015196‬
LC Classification : ‭QA402.5‬‭.C66 2010eb‬
Added Entry : Eldar, Yonina C.
: Palomar, Daniel P.
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟