|
" Trust-region methods / "
Andrew R. Conn, Nicholas I.M. Gould, Philippe L. Toint.
Document Type
|
:
|
BL
|
Record Number
|
:
|
1014819
|
Doc. No
|
:
|
b769189
|
Main Entry
|
:
|
Conn, A. R., (Andrew R.)
|
Title & Author
|
:
|
Trust-region methods /\ Andrew R. Conn, Nicholas I.M. Gould, Philippe L. Toint.
|
Publication Statement
|
:
|
Philadelphia, PA :: Society for Industrial and Applied Mathematics,, ©2000.
|
Series Statement
|
:
|
MPS-SIAM series on optimization ;; 1
|
Page. NO
|
:
|
xix, 959 pages :: illustrations ;; 26 cm.
|
ISBN
|
:
|
0898714605
|
|
:
|
: 9780898714609
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references (pages 813-934) and index.
|
Contents
|
:
|
Preface -- Chapter 1: Introduction -- PART I: PRELIMINARIES -- Chapter 2: Basic Concepts -- Chapter 3: Basic Analysis and Optimality Conditions -- Chapter 4: Basic Linear Algebra -- Chapter 5 Krylov Subspace Methods -- PART II: TRUST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION -- Chapter 6: Global Convergence of the Basic Algorithm -- Chapter 7: The Trust-Region Subproblem -- Chapter 8: Further Convergence Theory Issues -- Chapter 9: Conditional Models -- Chapter 10: Algorithmic Extensions -- Chapter 11: Nonsmooth Problems -- PART III: TRUST-REGION METHODS FOR CONSTRAINED OPTIMIZATION WITH CONVEX CONSTRAINTS -- Chapter 12: Projection Methods for Convex Constraints -- Chapter 13: Barrier Methods for Inequality Constraints -- PART IV: TRUST-REGION METHODS FOR GENERAL CONSTRAINED OPTIMIZATION AND SYSTEMS OF NONLINEAR EQUATIONS -- Chapter 14: Penalty-Function Methods -- Chapter 15: Sequential Quadratic Programming Methods -- Chapter 16: Nonlinear Equations and Nonlinear Fitting -- PART V: FINAL CONSIDERATIONS -- Chapter 17: Practicalities -- Afterword -- Appendix: A Summary of Assumptions -- Annotated Bibliography -- Subject and Notation Index -- Author Index.
|
Abstract
|
:
|
This is the first comprehensive reference on trust-region methods, a class of numerical algorithms for the solution of nonlinear convex optimization methods. Its unified treatment covers both unconstrained and constrained problems and reviews a large part of the specialized literature on the subject. It also provides an up-to-date view of numerical optimization.
|
Subject
|
:
|
Mathematical optimization.
|
Subject
|
:
|
Mathematical optimization.
|
Subject
|
:
|
Mathematical optimization.
|
Dewey Classification
|
:
|
519.3
|
LC Classification
|
:
|
QA402.5.C6485 2000
|
Added Entry
|
:
|
Gould, Nicholas I. M.
|
|
:
|
Toint, Ph. L., (Philippe L.)
|
| |