|
" Le raisonnement bayésien : "
Éric Parent, Jacques Bernier.
Document Type
|
:
|
BL
|
Record Number
|
:
|
1045572
|
Doc. No
|
:
|
b799942
|
Main Entry
|
:
|
Parent, E., (Eric),1957-
|
Title & Author
|
:
|
Le raisonnement bayésien : : modélisation et inférence /\ Éric Parent, Jacques Bernier.
|
Publication Statement
|
:
|
Paris :: Springer,, ©2007.
|
Series Statement
|
:
|
Collection Statistique et probabilités appliquées
|
Page. NO
|
:
|
1 online resource (xxiv, 364 pages) :: illustrations
|
ISBN
|
:
|
128134057X
|
|
:
|
: 228733906X
|
|
:
|
: 2287339078
|
|
:
|
: 9781281340573
|
|
:
|
: 9782287339066
|
|
:
|
: 9782287339073
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references (pages 351-358) and index.
|
Contents
|
:
|
Table des illustrations -- Liste des tableaux -- L'analyse bayésienne -- La décision en présence d'information -- Représentation probabiliste des connaissances -- Risque et aide bayésienne à la décision -- Comment construire un modèle?- Construire un modèle brique par brique -- Le calcul bayésien -- Motivations du calcul bayésien -- Méthodes exactes et modèles unidimensionnels -- Représentations multidimensionnelles -- Les méthodes asymptotiques -- Simulation Monte Carlo avec indépendance -- Algorithme de Metropolis-Hastings -- Algorithme de Gibbs -- Algorithmes MCMC et par delà -- Conclusions -- Annexes -- Bibliographie -- Index.
|
Abstract
|
:
|
Cet ouvrage expose de façon détaillée la pratique de l'approche statistique bayésienne à l'aide de nombreux exemples choisis pour leur intérêt pédagogique. La première partie donne les principes généraux de modélisation statistique permettant d'encadrer mais aussi de venir au secours de l'imagination de l'apprenti modélisateur. En examinant des exemples de difficulté croissante, le lecteur forge les clés pour construire son propre modèle. La seconde partie présente les algorithmes de calcul les plus utiles pour estimer les inconnues du modèle. Chaque méthode d'inférence est présentée et illustrée par de nombreux cas d'applications. Le livre cherche ainsi à dégager les éléments clés de la statistique bayésienne, en faisant l'hypothèse que le lecteur possède les bases de la théorie des probabilités et s'est déjà trouvé confronté à des problèmes ordinaires d'analyse statistique classique.
|
Subject
|
:
|
Bayesian statistical decision theory.
|
Subject
|
:
|
Statistique bayésienne.
|
Subject
|
:
|
Bayesian statistical decision theory.
|
Subject
|
:
|
MATHEMATICS-- Probability Statistics-- Bayesian Analysis.
|
Dewey Classification
|
:
|
519.542
|
LC Classification
|
:
|
QA279.5.P37 2007eb
|
Added Entry
|
:
|
Bernier, Jacques,1932-
|
| |