رکورد قبلیرکورد بعدی

" An Equivalence between Combinatorial Tangle Floer and Contact Categories "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1052309
Doc. No : TL51426
Main Entry : MacKinnon, Rebeccah
Title & Author : An Equivalence between Combinatorial Tangle Floer and Contact Categories\ MacKinnon, RebeccahCooper, Benjamin
College : The University of Iowa
Date : 2019
Degree : Ph.D.
student score : 2019
Note : 125 p.
Abstract : We prove an equivalence between the category underlying combinatorial tangle Floer homology and the contact category by building on the prior work of Lipshitz, Ozsváth, and Thurston and later Zhan. In his 2015 paper "Formal Contact Categories", Cooper establishes a relationship between the categories associated to oriented surfaces by Heegaard Floer theory and embedded contact theory. In this thesis, we examine a special case of his general argument to show an equivalence between the categories discussed by Petkova and Vértesi and those discussed by Tian. To do this, we construct two bimodules associated to the transformations between the underlying structure of combinatorial tangle Floer homology and the contact category. We take the tensor product of these bimodules and show that the product is equivalent to the identity, inducing an isomorphism between the categories of interest.
Descriptor : Mathematics
Added Entry : Cooper, Benjamin
Added Entry : The University of Iowa
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2309792223_2652.pdf
2309792223.pdf
پایان نامه لاتین
متن
application/pdf
1.20 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟