رکورد قبلیرکورد بعدی

" Leafwise Morse-Novikov Cohomological Invariants of Foliations "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1052785
Doc. No : TL51902
Main Entry : Islam, Md Shariful
Title & Author : Leafwise Morse-Novikov Cohomological Invariants of Foliations\ Islam, Md SharifulRichardson, Ken
College : Texas Christian University
Date : 2019
Degree : Ph.D.
student score : 2019
Note : 95 p.
Abstract : The idea of Lichnerowicz or Morse-Novikov cohomology groups of a manifold has been utilized by many researchers to study important properties and invariants of a manifold. Morse-Novikov cohomology is defined using the differential d_ω=d+ω∧ , where ω is a closed 1-form. We study Morse-Novikov cohomology in the context of singular distributions given by the kernel of differential forms, and foliations of manifold. The kernel of a d_ω closed form is involutive and hence gives a foliation of a manifold. A transversely oriented foliation of a Riemannian manifold uniquely determines leafwise Morse-Novikov cohomology groups, which are independent of the choice of metric in the sense that different metrics correspond to isomorphic groups. The relevant 1-form ω, which is always leafwise closed, can be chosen to be the mean curvature 1-form of the transverse distribution of the foliation. In the case of Riemannian foliations, we prove that the reduced leafwise Morse-Novikov cohomology groups satisfy the Hodge theorem and Poincar´e duality. We also show that for general singular foliations, the isomorphism classes of the induced leafwise Morse-Novikov cohomology groups are foliated homotopy invariants.
Descriptor : Mathematics
Added Entry : Richardson, Ken
Added Entry : Texas Christian University
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2346618086_3604.pdf
2346618086.pdf
پایان نامه لاتین
متن
application/pdf
1.17 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟