رکورد قبلیرکورد بعدی

" A Complete Machine Learning Approach for Predicting Lithium-Ion Cell Combustion "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1054281
Doc. No : TL53398
Main Entry : Almagro Yravedra, Fernando
Title & Author : A Complete Machine Learning Approach for Predicting Lithium-Ion Cell Combustion\ Almagro Yravedra, FernandoLi, Zuyi
College : Illinois Institute of Technology
Date : 2020
Degree : M.S.
student score : 2020
Note : 139 p.
Abstract : The object of the herein thesis work document is to develop a functional predictive model, able to predict the combustion of a US18650 Sony Lithium-Ion cell given its current and previous states. In order to build the model, a realistic electro-thermal model of the cell under study is developed in Matlab Simulink, being used to recreate the cell's behavior under a set of real operating conditions. The data generated by the electro-thermal model is used to train a recurrent neural network, which returns the chance of future combustion of the US18650 Sony Lithium-Ion cell. Independently obtained data is used to test and validate the developed recurrent neural network using advanced metrics.
Descriptor : Artificial intelligence
: Electrical engineering
Added Entry : Li, Zuyi
Added Entry : Illinois Institute of Technology
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2446477230_6584.pdf
2446477230.pdf
پایان نامه لاتین
متن
application/pdf
7.39 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟