رکورد قبلیرکورد بعدی

" Query Focused Abstractive Summarization Using BERTSUM Model "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1054795
Doc. No : TL53912
Main Entry : Abdullah, Deen Mohammad
Title & Author : Query Focused Abstractive Summarization Using BERTSUM Model\ Abdullah, Deen MohammadChali, Yllias
College : University of Lethbridge (Canada)
Date : 2020
Degree : M.Sc.
student score : 2020
Note : 78 p.
Abstract : In Natural Language Processing, researchers find many challenges on Query Focused Abstractive Summarization (QFAS), where Bidirectional Encoder Representations from Transformers for Summarization (BERTSUM) can be used for both extractive and abstractive summarization. As there is few available datasets for QFAS, we have generated queries for two publicly available datasets, CNN/Daily Mail and Newsroom, according to the context of the documents and summaries. To generate abstractive summaries, we have applied two different approaches, which are Query focused Abstractive and Query focused Extractive then Abstractive summarizations. In the first approach, we have sorted the sentences of the documents from the most query-related sentences to the less query-related sentences, and in the second approach, we have extracted only the query related sentences to fine-tune the BERTSUM model. Our experimental results show that both of our approaches show good results on ROUGE metric for CNN/Daily Mail and Newsroom datasets.
Descriptor : Artificial intelligence
: Computer science
: Engineering
Added Entry : Chali, Yllias
Added Entry : University of Lethbridge (Canada)
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2460975898_7612.pdf
2460975898.pdf
پایان نامه لاتین
متن
application/pdf
1.87 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟