رکورد قبلیرکورد بعدی

" Using Flow Cytometry and Multistage Machine Learning to Discover Label-Free Signatures of Algal Lipid Accumulation "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1057100
Doc. No : TL56217
Main Entry : Tanhaemami, Mohammad
Title & Author : Using Flow Cytometry and Multistage Machine Learning to Discover Label-Free Signatures of Algal Lipid Accumulation\ Tanhaemami, MohammadMunsky, Brian E.
College : Colorado State University
Date : 2020
Degree : M.S.
student score : 2020
Note : 66 p.
Abstract : Most applications of flow cytometry or cell sorting rely on the conjugation of fluorescent dyes to specific biomarkers. However, labeled biomarkers are not always available, they can be costly, and they may disrupt natural cell behavior. Label-free quantification based upon machine-learning approaches could help correct these issues, but label replacement strategies can be very difficult to discover when applied labels or other modifications in measurements inadvertently modify intrinsic cell properties. Here we demonstrate a new, but simple approach based upon feature selection and linear regression analyses to integrate statistical information collected from both labeled and unlabeled cell populations and to identify models for accurate label-free single-cell quantification. We verify the method's accuracy to predict lipid content in algal cells Picochlorum soloecismus during a nitrogen starvation and lipid accumulation time course. Our general approach is expected to improve label-free single-cell analysis for other organisms or pathways, where biomarkers are inconvenient, expensive, or disruptive to downstream cellular processes.
Descriptor : Bioengineering
: Biomedical engineering
: Chemical engineering
Added Entry : Munsky, Brian E.
Added Entry : Colorado State University
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2480792271_12210.pdf
2480792271.pdf
پایان نامه لاتین
متن
application/pdf
2.71 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟