This page uses JavaScript and requires a JavaScript enabled browser.Your browser is not JavaScript enabled.
مرکز و کتابخانه مطالعات اسلامی به زبان های اروپایی
منو
درگاههای جستجو
مدارک
جستجوی پیشرفته
مرور
جستجو در سایر کتابخانه ها
مستندات
جستجوی پیشرفته
مرور
منابع دیجیتال
تمام متن
اصطلاحنامه
درختواره
پرسش و پاسخ
سوالات متداول
پرسش از کتابدار
پیگیری پرسش
ورود
ثبت نام
راهنما
خطا
رکورد قبلی
رکورد بعدی
"
Control-Based Reconstruction and Pose-Estimation
"
Islam, Bipul
Sandhu, Romeil
Document Type
:
Latin Dissertation
Language of Document
:
English
Record Number
:
1057491
Doc. No
:
TL56608
Main Entry
:
Islam, Bipul
Title & Author
:
Control-Based Reconstruction and Pose-Estimation\ Islam, BipulSandhu, Romeil
College
:
State University of New York at Stony Brook
Date
:
2020
Degree
:
Ph.D.
student score
:
2020
Note
:
150 p.
Abstract
:
One of the pertinent problems in robotic vision is scene understanding from data-acquired by a network of 2D imaging sensors. In particular, two of the fundamental problems in vision in this regard are shape and pose estimation of scene-objects. Most modern learning/estimation methods solve these problems by formulating them as optimization problems that try to model the data-space into a tractable form. In real life applications, due to the dynamic nature of real-world scenarios and the dynamic nature of data inconsistencies, such formulations are often incomplete. That is, there always will exist an information gap in any given modeling effort especially under difficult imaging conditions found in aerospace, medical, and space applications. This dissertation is to study the aforementioned key problems in robotic vision in a variational and control setting for which we devise strategies to manage algorithm performance degeneration. From this, we then reinterpret the reconstruction problem as a multi-agent network problem in which we are interested in understanding its dynamical properties; i.e. how to potentially understand statistics over a time-varying networks. Nevertheless, the main goal is to provide a control variational framework that is capable of handling dynamic real-world data-inconsistencies from a geometric perspective. Ultimately, such advances can be applied to a general body of problems not limited to robotic vision.
Descriptor
:
Applied mathematics
:
Artificial intelligence
:
Bioinformatics
:
Computer science
:
Robotics
Added Entry
:
Sandhu, Romeil
Added Entry
:
State University of New York at Stony Brook
https://lib.clisel.com/site/catalogue/1057491
کپی لینک
پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2488002177_12992.pdf
2488002177.pdf
پایان نامه لاتین
متن
application/pdf
34.50 MB
85
85
نمایش
نظرسنجی
نظرسنجی منابع دیجیتال
1 - آیا از کیفیت منابع دیجیتال راضی هستید؟
X
کم
متوسط
زیاد
ذخیره
پاک کن