رکورد قبلیرکورد بعدی

" Speaker Recognition: "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1104139
Doc. No : TLpq2196884882
Main Entry : Alghamdi, Mohammad S.
: Boult, Terrance
Title & Author : Speaker Recognition:\ Alghamdi, Mohammad S.Boult, Terrance
College : University of Colorado Colorado Springs
Date : 2019
student score : 2019
Degree : M.Eng.
Page No : 73
Abstract : The Speaker Recognition (SR) systems are more accurate than ever in verifying and identifying the human voice which is one of the most convenient biometric characteristics of the human identity. Research and development on speaker recognition techniques have been varied widely in the last decade with an aim to lessen relevant challenges effects such as background noise, poor channel conditions, crosstalk, etc. In this paper, we evaluate two speaker verification (SV) systems, and each one uses an entirely different method to verify speakers: 1) ALIZE 3.0 which is an opensource platform for SR that was successfully passed the NIST Speaker Recognition Evaluations (SREs) implementing Gaussian mixture model (GMM)-UBM speaker. The other one is 2) 3D Convolutional Neural Network (3D-CNN) architecture, which uses a novel method for speaker verification based on Neural Network technique. This paper investigates how challenging it is to implement applications handling tasks in the field of speaker verification.
Subject : Computer science
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2196884882_8527.pdf
2196884882.pdf
پایان نامه لاتین
متن
application/pdf
3.94 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟