رکورد قبلیرکورد بعدی

" A Multilinear Approach to the Unsupervised Learning of Morphology "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1104931
Doc. No : TLpq2281090581
Main Entry : Dickinson, Markus
: Meyer, Anthony
Title & Author : A Multilinear Approach to the Unsupervised Learning of Morphology\ Meyer, AnthonyDickinson, Markus
College : Indiana University
Date : 2019
student score : 2019
Degree : Ph.D.
Page No : 187
Abstract : This dissertation presents a multilinear approach to the unsupervised learning of morphology (ULM), where multilinear refers to a multi-tiered architecture that allows for the handling of both concatenative and nonconcatenative phenomena in a general, unified way, as in autosegmental morphology. This dissertation reformulates autosegmental theory in graph-theoretic terms. That is, it identifies the essential properties that make autosegmental theory so conducive to modeling nonconcatenative morphology and shows that these properties are equivalent to the mathematical properties of a bipartite graph. This observation makes it possible to recast the autosegmental formalism as a graphical machine-learning model, namely the Multiple Cause Mixture Model (MCMM), a bipartite graphical model related to the Restricted Boltzmann Machine. The dissertation's experimental component consists of the development and evaluation of Multimorph, an MCMM-driven ULM system. The evaluation method takes a “dual-paradigm” approach, comprising both intrinsic and extrinsic components. The latter evaluates the system as a component of a larger chain of processes. This in line with lexeme-based theories of morphology, i.e., theories that regard morphology as a distinct but mediating layer of linguistic organization situated between phonology and syntax/semantics. The results of the experiments demonstrate the soundness and promise of a multilinear approach to the unsupervised learning of morphology.
Subject : Computer science
: Linguistics
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2281090581_10111.pdf
2281090581.pdf
پایان نامه لاتین
متن
application/pdf
1.28 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟