This page uses JavaScript and requires a JavaScript enabled browser.Your browser is not JavaScript enabled.
مرکز و کتابخانه مطالعات اسلامی به زبان های اروپایی
منو
درگاههای جستجو
مدارک
جستجوی پیشرفته
مرور
جستجو در سایر کتابخانه ها
مستندات
جستجوی پیشرفته
مرور
منابع دیجیتال
تمام متن
اصطلاحنامه
درختواره
پرسش و پاسخ
سوالات متداول
پرسش از کتابدار
پیگیری پرسش
ورود
ثبت نام
راهنما
خطا
رکورد قبلی
رکورد بعدی
"
Disaggregate Agricultural Statistics:
"
Guo, Zhe
Di, Liping
Document Type
:
Latin Dissertation
Language of Document
:
English
Record Number
:
1106296
Doc. No
:
TLpq2384570877
Main Entry
:
Di, Liping
:
Guo, Zhe
Title & Author
:
Disaggregate Agricultural Statistics:\ Guo, ZheDi, Liping
College
:
George Mason University
Date
:
2019
student score
:
2019
Degree
:
Ph.D.
Page No
:
127
Abstract
:
The location-specific information of the area, yield, and production of crops are vital for food security planning especially in developing countries where the living standards of the dominant population largely rely on agriculture activities. Teff is the most important staple crop in Ethiopia that made up 20% of all cultivated area. The area and production of teff collected from sample surveys are lacking in spatial information and are at the administrative level. And the survey is labor-intensive and time consuming in practice. Alternatively, spatiotemporal remotely sensed data have widely applied in land cover mapping. The normalized difference vegetation index (NDVI) is the most used vegetation index in crop area and yield estimation. This research intends to map the teff area using unsupervised classification with a statistical optimization algorithm by integrating spatiotemporal remotely sensed data and sub-national statistics. First, the 16-day 250m MODIS NDVI pixels are clustered with K-means unsupervised learning. Special attention has been paid to the selection of optimal cluster numbers. A linear regression model under the non-linear constrained minimization optimization is performed to integrate the subnational statistics from household survey with clusters of NDVI pixels. The coefficients of the regression model are used to estimate the fraction of teff area at the pixel level. The validation shows an acceptable R2 (0.66) between the modeled results and survey data. The results demonstrate an innovative method to improve location-specific crop type mapping at sub-pixel level by integrating remotely sensed data and machine learning technique with sub-national statistics.
Subject
:
Geography
https://lib.clisel.com/site/catalogue/1106296
کپی لینک
پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2384570877_12841.pdf
2384570877.pdf
پایان نامه لاتین
متن
application/pdf
2.46 MB
85
85
نمایش
نظرسنجی
نظرسنجی منابع دیجیتال
1 - آیا از کیفیت منابع دیجیتال راضی هستید؟
X
کم
متوسط
زیاد
ذخیره
پاک کن