رکورد قبلیرکورد بعدی

" Experimental and Numerical Failure Analysis of Deep Steel Column Sections "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1106987
Doc. No : TLpq2424512804
Main Entry : Bell, Erin
: Zargar Shoushtari, Shokoufeh
Title & Author : Experimental and Numerical Failure Analysis of Deep Steel Column Sections\ Zargar Shoushtari, ShokoufehBell, Erin
College : University of New Hampshire
Date : 2020
student score : 2020
Degree : Ph.D.
Page No : 266
Abstract : The availability of reliable numerical models is essential to reduce the uncertainties present in the prediction of structural behavior. Experimental studies allow the calibration and development of numerical models capable of characterizing the realistic behavior of structural elements and components until the limit state of collapse is approached. Exterior columns in perimeter steel moment-resisting frame structures that are exposed to strong earthquakes experience bending moment demands with high levels of axial load due to overturning. Deep wide flange sections can be used as exterior columns to increase the lateral stiffness of moment frames without significantly increasing the overall weight of the structure. However, experimental data on the cyclic response of deep steel wide flange sections subjected to large drift, rotation, and axial load demands are scarce. To address this need, this research presents results from an experimental program that deals with studying and quantifying the behavior of 1:8 scaled W36X652 column sections exposed to different monotonic and cyclic loading histories consisting of large drift ratios of up to 0.1 rad, rotations at the tip of the column of up to 0.1 rad, and variable levels of axial loads up to 60% (in compression) of the column axial load carrying capacity that vary between tension and compression are used. The experiments consist of quasi-static experiments and hybrid simulations. The influence of member behavior and axial load on the parameters that control the collapse of the structure was studied. Column plastic rotations from 0.012 to 0.08 rad and post-capping rotations from 0.03 to 0.37 rad were observed depending on the loading history and level of axial load. Further, numerical models of the column were calibrated utilizing the experimental results performed in this research. These models can be used for design and performance prediction of deep column section, especially valued in seismic design and assessment.
Subject : Civil engineering
: Design
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2424512804_14222.pdf
2424512804.pdf
پایان نامه لاتین
متن
application/pdf
2.08 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟