This page uses JavaScript and requires a JavaScript enabled browser.Your browser is not JavaScript enabled.
مرکز و کتابخانه مطالعات اسلامی به زبان های اروپایی
منو
درگاههای جستجو
مدارک
جستجوی پیشرفته
مرور
جستجو در سایر کتابخانه ها
مستندات
جستجوی پیشرفته
مرور
منابع دیجیتال
تمام متن
اصطلاحنامه
درختواره
پرسش و پاسخ
سوالات متداول
پرسش از کتابدار
پیگیری پرسش
ورود
ثبت نام
راهنما
خطا
رکورد قبلی
رکورد بعدی
"
Entropy-Based Experience Replay in Reinforcement Learning
"
Dadvar, Mehdi
Doerschuk, Peggy Israel
Document Type
:
Latin Dissertation
Language of Document
:
English
Record Number
:
1107536
Doc. No
:
TLpq2447994726
Main Entry
:
Dadvar, Mehdi
:
Doerschuk, Peggy Israel
Title & Author
:
Entropy-Based Experience Replay in Reinforcement Learning\ Dadvar, MehdiDoerschuk, Peggy Israel
College
:
Lamar University - Beaumont
Date
:
2020
student score
:
2020
Degree
:
M.Sc.
Page No
:
77
Abstract
:
Reinforcement learning mediates supervised and unsupervised learning to adequately solve learning problems where no prior experience is available to train an agent. The agent learns from its own experience by trying different actions in different states of its environment and rewarding those actions that improve its performance. Experience replay is a technique developed to utilize the learning agent’s experience for further enhancement in an online manner. Experience replay lets the online reinforcement learning agent remember and reuse its experiences from the past. Training the agent iteratively on small batches of examples from the experience replay buffer makes the learning faster and more accurate. However, the way that the batching is implemented plays a significant role in the quality and speed of the learning process. Prior works in this field neglect the diversity of the samples chosen for batching purposes: the experience histories are randomly sampled from a replay buffer. This approach does not guarantee the diversity of experiences and is susceptible to choosing very similar or even redundant experiences for inclusion in a batch. In this research, a framework, called entropy-based experience replay (EER), for increasing information gain of the batched experience is developed by maximizing the entropy among the states of a minibatch. Having said that, each minibatch introduces diverse experiences to the agent’s neural networks, from which a faster and more stable learning is expected. The entropy-based experience replay is applied in Deep Q-Networks (DQN) in the Gym environment of OpenAI, where the effect of the presented method is investigated and tested on a classic control model of the Gym environment. As extensive simulation results demonstrate, perceptible increases in the entropies of sampled experiences fulfilled by the EER method resulted in significant increase in the learning agent’s performance.
Subject
:
Artificial intelligence
:
Computer science
https://lib.clisel.com/site/catalogue/1107536
کپی لینک
پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2447994726_15309.pdf
2447994726.pdf
پایان نامه لاتین
متن
application/pdf
1.87 MB
85
85
نمایش
نظرسنجی
نظرسنجی منابع دیجیتال
1 - آیا از کیفیت منابع دیجیتال راضی هستید؟
X
کم
متوسط
زیاد
ذخیره
پاک کن