رکورد قبلیرکورد بعدی

" Multiscale Fluid-Solid Interaction in Deformable Porous Media "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1107773
Doc. No : TLpq2456132831
Main Entry : Fagbemi, Samuel A.
: Tahmasebi, Pejman
Title & Author : Multiscale Fluid-Solid Interaction in Deformable Porous Media\ Fagbemi, Samuel A.Tahmasebi, Pejman
College : University of Wyoming
Date : 2020
student score : 2020
Degree : Ph.D.
Page No : 191
Abstract : The study of the interaction between rocks and residing fluids is an important field of research in hydrology, geomechanics, and energy resources. Geomechanical systems undergo deformation due to gravitational loading and plate tectonic activities. Deformation could also occur due to changes in pore pressure resulting from fluid injection and production. Such natural and human-controlled events tend to alter the hydro-mechanical equilibrium depending on the morphology, stress history, and fluids present. The in-situ characterization and description of such complex interactions is hence a non-trivial task demanding the interlinking of different physical phenomena. In this dissertation, therefore, we present a fluid-solid interaction (FSI) problem for a porous medium which undergoes finite deformation at the pore-scale. The upscaled response for such a system is consistent with the non-linear Biot theory. We then apply the FSI model for examining the role of microstructure and effective stress in permeability alteration. Furthermore, we introduce a framework for studying the interaction between multiphase flow and solids coupled with adhesion effects where the role of surface tension forces in deformation is investigated. The results indicate the deformation for Berea sandstone saturated with a two-phase fluid is minuscule and depends primarily on the elastocapillary length of the medium. Furthermore, uniaxial and triaxial stresses were applied normal to the surface of the solid skeleton during drainage and imbibition events, and for all cases, a reduction in relative permeability of oil was observed, implying stress conditions did not produce a positive shift in the relative permeability of oil.
Subject : Engineering
: Hydrologic sciences
: Petroleum engineering
: Petrology
: Plate tectonics
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2456132831_15783.pdf
2456132831.pdf
پایان نامه لاتین
متن
application/pdf
6.13 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟