رکورد قبلیرکورد بعدی

" Chiral Quantum Optics Using Topological Photonics "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1111288
Doc. No : TLpq2496355936
Main Entry : Barik, Sabaysachi
: Waks, Edo
Title & Author : Chiral Quantum Optics Using Topological Photonics\ Barik, SabaysachiWaks, Edo
College : University of Maryland, College Park
Date : 2020
student score : 2020
Degree : Ph.D.
Page No : 111
Abstract : Topological photonics has opened new avenues to designing photonic devices along with opening a plethora of applications. Recently, even though there have been many interesting studies in topological photonics in the classical domain, the quantum regime has remained largely unexplored. In this thesis, I will demonstrate a recently developed topological photonic crystal structure for interfacing a single quantum dot spin with a photon to realize light-matter interaction with topolog-ical photonic states. Developed on a thin slab of Gallium Arsenide(GaAs) mem- brane with electron beam lithography, such a device supports two robust counter- propagating edge states at the boundary of two distinct topological photonic crystals at near-IR wavelength. I will show the chiral coupling of circularly polarized lights emitted from a single Indium Arsenide(InAs) quantum dot under a strong magnetic field into these topological edge modes. Owing to the topological nature of these guided modes, I will demonstrate this photon routing to be robust against sharp corners along the waveguide. Additionally, taking it further into the cavity-QED regime, we will build a topological photonic crystal resonator. This new type of resonator will be based on valley-Hall topological physics and sustain two counter- propagating resonator modes. Thanks to the robustness of the topological edge modes to sharp bends, the newly formed resonators can take various shapes, the simplest one being a triangular optical resonator. We will study the chiral coupling of such resonator modes with a single quantum dot emission. Moreover, we will show an intensity enhancement of a single dot emission when it resonantly couples with a cavity mode. This new topological photonic crystal platform paves paths for fault-tolerant complex photonic circuits, secure quantum computation, and explor- ing unconventional quantum states of light and chiral spin networks.
Subject : Physics
: Quantum physics
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2496355936_22802.pdf
2496355936.pdf
پایان نامه لاتین
متن
application/pdf
48.25 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟