رکورد قبلیرکورد بعدی

" Numerical investigation of pulsating flows in abrupt expansion pipes "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1113125
Doc. No : TLpq304479407
Main Entry : M. O. Iqbal
Title & Author : Numerical investigation of pulsating flows in abrupt expansion pipes\ M. O. Iqbal
College : King Fahd University of Petroleum and Minerals (Saudi Arabia)
Date : 1998
student score : 1998
Degree : M.S.
Page No : 91
Abstract : Numerical investigations aimed at understanding the flow and heat transfer characteristics for the pulsating turbulent flow in abrupt-expansion pipes were carried out. The computations employed control volume method to solve the Navier-Stokes equations and energy equation. Turbulence was simulated via standard k-usd\varepsilonusd model. The study covers the downstream Reynolds number ranging from 10000 to 50000, Prandtl number varied from 0.7 to 7.0, upstream to downstream diameter ratio ranged between 0.2 to 0.6, frequency of pulsation was varied from 5 to 35. Amplitude ratio of pulsation was kept constant at 0.3. The numerical procedure used in this study was validated by comparing the steady-state results cited in the literature. The presented results consist of computed streamline distributions, mean time-averaged Nusselt number, time-averaged maximum Nusselt number and location of maximum Nusselt number at different Reynolds number and diameter ratios under the influence of pulsation. The results show the increase in the mean time-averaged Nusselt number with the frequency of pulsation. The effect of pulsation on the mean time-averaged Nusselt number is insignificant for fluids having Prandtl number less than unity (around 10% increase in the value of mean time-averaged Nusselt number for Prandtl number of 0.7 at frequency of 35 Hz, Reynolds number of 30000 and diameter ratio of 0.5). Whereas, this effect is appreciable for the fluids having Prandtl number greater than unity (around 30% increase in the value of mean time-averaged Nusselt number for Prandtl number of 7.0 at Reynolds number of 20000, frequency of 40 Hz and diameter ratio of 0.5). At all pulsation frequencies variation in mean time-average Nusselt number, maximum Nusselt number and its location with Reynolds number and diameter ratio exhibit similar characteristics as steady flows.
Subject : Applied sciences
: Mechanical engineering
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
304479407_26462.pdf
304479407.pdf
پایان نامه لاتین
متن
application/pdf
3.22 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟