رکورد قبلیرکورد بعدی

" The positive semidefinite completion problem for two unspecified entries "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1113319
Doc. No : TLpq304343199
Main Entry : M. O. N. a. Omran
: W. W. Barrett
Title & Author : The positive semidefinite completion problem for two unspecified entries\ M. O. N. a. OmranW. W. Barrett
College : Brigham Young University
Date : 1997
student score : 1997
Degree : Ph.D.
Page No : 53
Abstract : The positive semidefinite (PSD) completion problem is concerned with determining the set of PSD completions of a partial matrix. Let usdB(x,y)usd and usdA(x,y)usd be real partial PSD matrices of order usdn\ge4usd with x and y the two unspecified entries corresponding to the two adjacent (respectively, nonadjacent) missing edges of their graphs. We show that the possible completion regions for usdB(x,y)usd are either a single point, a line segment, or an ellipse. For usdA(x,y)usd we give a fairly complete description of the real PSD completion region R. We find necessary and sufficient conditions on the specified entries of usdA(x,y)usd so that there are 1, 2, 3 or 4 singular points on the boundary of R, and so that usdA(x,y)usd has rank 2 PSD completions. We show that rank 2 completions occur in one of three ways: either there is a unique PSD completion (R is a single point), or det usdA(x,y)usd factors (with the occurrence of singular points), or the PSD completion region R (not a single point) contains a unique rank 2 PSD completion which is a singular point.
Subject : Mathematics
: Pure sciences
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
304343199_26848.pdf
304343199.pdf
پایان نامه لاتین
متن
application/pdf
1.93 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟