رکورد قبلیرکورد بعدی

" Symmetrizations and convolutions of convex bodies "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1113465
Doc. No : TLpq304283008
Main Entry : A. P. Tsolomitis
: W. Davis
Title & Author : Symmetrizations and convolutions of convex bodies\ A. P. TsolomitisW. Davis
College : The Ohio State University
Date : 1996
student score : 1996
Degree : Ph.D.
Page No : 94
Abstract : We establish some new quantitative results on Steiner/Schwarz-type symmetrizations, continuing the line of related results of Bourgain, J. Lindenstrauss, J. and Milman, V. on Steiner symmetrizations (see, Bourgain, J. Lindenstrauss, J. and Milman, V., Estimates related to Steiner symmetrizations, GAFA 87-88 (Lindenstrauss, J. and Milman, V., eds.), vol. 1376, Springer Lecture Notes, 1989 pp. 264-273). We show that if we symmetrize high dimensional sections of convex bodies, then very few steps are required to bring such a body close to a Euclidean ball. We continue the study of high dimensional phenomena by introducing the limiting convolution body of two convex bodies extending the notion of the limiting convolution square studied by Kiener, K. and Schmuckenschlager, M. (see, Kiener, K., Extremalitat von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math. 46 (1986), 162-168 and Schmuckenschlager, M., The distribution function of the convolution square of a convex symmetric body in usd\IR\sp{n}usd, Israel Journal of Mathematics 78 (1992), 309-334). We compute examples demonstrating the diversity of bodies one may receive as a limiting convolution body which are of independent interest as well. However, we prove that for "generic" bodies the limiting convolution body is an ellipsoid.
Subject : Mathematics
: Pure sciences
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
304283008_27139.pdf
304283008.pdf
پایان نامه لاتین
متن
application/pdf
2.70 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟