رکورد قبلیرکورد بعدی

" Integral Equation-Based Numerical Methods for the Time-Dependent Schrödinger Equation "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 1113882
Doc. No : TLpq2394293355
Main Entry : Greengard, Leslie
: Kaye, Jason
Title & Author : Integral Equation-Based Numerical Methods for the Time-Dependent Schrödinger Equation\ Kaye, JasonGreengard, Leslie
College : New York University
Date : 2020
student score : 2020
Degree : Ph.D.
Page No : 137
Abstract : In the first part of this dissertation, we introduce a new numerical method for the solution of the time-dependent Schrodinger equation (TDSE) with a smooth potential, based on its reformulation as a Volterra integral equation. We present versions of the method both for periodic boundary conditions, and for free space problems with compactly supported initial data and potential. A spatially uniform electric field may be included, making the solver applicable to simulations of light-matter interaction.
Subject : Contour deformation
: Integral equations
: Light-matter interaction
: Pseudospectral methods
: Time-dependent Schrödinger equation
: Transparent boundary conditions
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2394293355_27972.pdf
2394293355.pdf
پایان نامه لاتین
متن
application/pdf
7.98 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟