|
" Smart ceramics : "
Document Type
|
:
|
BL
|
Record Number
|
:
|
554888
|
Doc. No
|
:
|
b383459
|
Main Entry
|
:
|
Ajay Kumar Mishra
|
Title & Author
|
:
|
Smart ceramics : : preparation, properties, and applications.
|
Publication Statement
|
:
|
Singapore : Pan Stanford,, 2018.
|
ISBN
|
:
|
1315163594
|
|
:
|
: 1351671642
|
|
:
|
: 9781315163598
|
|
:
|
: 9781351671644
|
|
:
|
: 9789814774307
|
|
:
|
: 9814774308
|
Contents
|
:
|
Cover Half Title Title Page Copyright Page Table of Contents Preface Chapter 1: Recent Trends in Sol-Gel-Based Nanoceramics 1.1 Introduction 1.2 Classification of Ceramic Nanocomposites 1.3 Sol-Gel Methods and Chemistry 1.3.1 Colloidal Sol-Gel Methods 1.3.2 Polymer-Assisted Sol-Gel Methods 1.4 Applications of Sol-Gel in Nanoceramics 1.4.1 Nanosized Films and Nanostructured Coatings 1.4.2 Nanoceramics as Surfaces for Self-Cleaning Function 1.4.3 Nanoceramics in Molecular Separation Membranes 1.4.4 Nanoceramics in Abrasives 1.4.5 Nanoceramics in Engineering Materials. 1.4.6 Nanoceramics in Electronics1.4.7 Nanoceramics in Biomaterials 1.4.8 Hybrid Nanoceramics in Drug and Protein Delivery 1.4.9 Miscellaneous 1.5 Future Aspects 1.6 Conclusions Chapter 2: Ceramic Materials: General Introduction, Properties, and Fabrication Methods 2.1 Introduction 2.2 Ceramics in the Past 2.3 Classification 2.4 Synthesis Method of Ceramic Materials 2.4.1 The Sol-Gel Method 2.4.2 The Electrochemical Method 2.4.3 The Combustion Method 2.4.4 Coprecipitation 2.4.5 The Spray Pyrolysis Method 2.5 Ceramic Properties 2.5.1 Magnetic Properties. 2.5.2 Thermal Properties2.5.3 Electrical Properties 2.5.4 Mechanical Properties Chapter 3: Ceramic-Based Nanomaterials for Multifunctional Application 3.1 Introduction 3.2 Opportunities and Future Perspectives 3.2.1 Overview of Ceramic-Based Nanomaterials 3.3 What Makes Ceramic-Based Nanomaterials Persuading? 3.4 Strategies of Synthesis for Purposeful Use 3.5 Promising Ceramic-Based Nanomaterials 3.5.1 Tungsten Trioxide 3.5.2 Zinc Oxide 3.5.3 Titanium Dioxide 3.5.4 Barium Titanate 3.5.5 Zirconium Dioxide 3.5.6 Hydroxyapatite 3.5.7 Silicon Carbide 3.6 Conclusions. Chapter 4: Fabrication of Porous Nanoceramic Materials Based on Sol-Gel Chemistry4.1 Background 4.2 What Are Nanoceramics? 4.3 Synthesis of Nanoceramic Composites 4.3.1 Challenges Involved in Processing 4.3.2 Coprecipitation 4.3.3 Pyrolysis or Spray Decomposition 4.3.4 Solution Combustion 4.3.5 The Sol-Gel Method 4.3.5.1 Advantages of sol-gel 4.3.5.2 Disadvantages of sol-gel 4.4 Chemistry of the Sol-Gel Process 4.5 Properties of Sol-Gel Ceramics 4.5.1 Thermal Resistance 4.5.2 Mechanical Properties 4.6 Some Common Examples of Nanoceramics via the Sol-Gel Process. 4.6.1 Silica-Based Ceramics4.6.2 Zirconium-Based Ceramics 4.6.3 Alumina-Based Ceramics 4.7 Other Advanced Nanoceramics Composites 4.7.1 YAG-/SIC-Based Composites 4.7.2 SiC-/TiC-Based Composites 4.7.3 SI3N4/SIC Nanocomposites 4.8 Applications of Sol-Gel-Derived Ceramics 4.8.1 Biomedical Applications 4.8.1.1 Nanoceramics for dental applications 4.8.2 Sol-Gel-Derived Ceramic-Carbon Composite Electrodes 4.8.3 Sol-Gel-Derived Ceramic Membranes 4.8.4 Nanocomposite Electrodes 4.8.5 Nanoceramic Sensors 4.9 Future Aspects 4.10 Conclusion.
|
Subject
|
:
|
Electronic books
|
| |