خط مشی دسترسیدرباره ماپشتیبانی آنلاین
ثبت نامثبت نام
راهنماراهنما
فارسی
ورودورود
صفحه اصلیصفحه اصلی
جستجوی مدارک
تمام متن
منابع دیجیتالی
رکورد قبلیرکورد بعدی
Document Type:Latin Dissertation
Language of Document:English
Record Number:55532
Doc. No:TL25486
Call number:‭3499104‬
Main Entry:Michele Weber
Title & Author:The Biogeography and Evolution of Symbiodinium in Giant Clams (Tridacnidae)Michele Weber
College:University of California, Berkeley
Date:2009
Degree:Ph.D.
student score:2009
Page No:131
Abstract:In the first chapter I documented diversity of Symbiodinium for two species of giant clam, Tridacna maxima and Tridacna squamosa , across their Indo West Pacific distribution. At 25 localities across the Indo-Pacific from French Polynesia to the Red Sea, I collected small pieces of mantle tissue and recorded the depth and reef environment where each sample was collected. A complete distribution of Symbiodinium phylotypes in association with giant clams across their range provided a broad indication of what fraction of total Symbiodinium diversity associates with this host group. Compared to other host groups, Tridacna are specific hosts; of the hundreds of Symbiodinium genotypes documented in the literature and on GenBank, only ten distinct types live in giant clams and all had been reported from alternative hosts. Giant clams are crown group metazoans and each generation acquires new symbionts from the environment. While other alternative hosts, such as corals and foraminifera, can transfer symbionts between generations and occasionally evolve lineages of specific symbionts, I did not identify novel clam specific lineages. Giant clams host generalist Symbiodinium lineages that are readily available in the water column. In the second chapter I focused on the lack of Symbiodinium diversity in T. maxima from the Red Sea. Only one phylotype of Symbiodinium was identified from T. maxima in the Red Sea and these sequences were not found in Tridacna samples from other regions. I proposed two hypotheses for the lack of diversity and concluded that multiple symbiont lineages had colonized the Red Sea but only a single lineage was successful and therefore, it replaced the other types and persisted. I compared the Red Sea phylotype to other Symbiodinium from alternative hosts in the Red Sea, the Mediterranean Sea and the West Indian Ocean, to show that the most closely related phylotypes exist along the coast of Kenya. I concluded that the Red Sea lineage originated in the West Indian Ocean and colonized the Red Sea via an alternative host that entered through the straits at Bab al Mandab, after the last glacial maximum, 12,000 years ago. Evidence of an endemic holobiont was evaluated with respect to the evolution of cooperation and transitional associations between partners on a geologic time scale. I suggested that the Red Sea phylotype is dominant because it was an infectious lineage. It easily colonized the new host population soon after the Red Sea reflooded, but the endemic holobiont may be transitional and as conditions stabilize, a more cooperative lineage will out-compete and replace the less efficient phylotype. In the third chapter I addressed a diversity anomaly in the West Indian Ocean. The center of marine biodiversity is the Central Indo West Pacific, which includes Indonesia, the Philippines, Papua New Guinea and the northern Great Barrier Reef in Australia. I sampled more species of giant clam from Papua New Guinea and Australia and observed more symbiont lineages in association with those hosts than any other region within this study. In the West Indian Ocean I only observed two species of host, as was expected based on the marine biodiversity gradient. However, I also identified five lineages of Symbiodinium and while diversity in T. squamosa holobionts was lower in the West Indian Ocean, T. maxima holobionts were equally diverse in both regions. T. squamosa was a generalist in the Central Indo West Pacific and a specialist in the West Indian Ocean but T. maxima was a generalist in both regions. I proposed multiple hypotheses to account for these biogeographic patterns including geologic and oceanographic conditions, niche ecology and historical biogeographic patterns for the hosts. Historical biogeography of a holobiont system provides a new framework that includes the history of associations between partners as well as biogeographic patterns for each individual partner. In this case the history of the association between host and symbiont suggested what modern ecology could not explain. I showed that the holobiont range shifted more slowly than the host ranges and that the modern holobiont diversity in the West Indian Ocean is a legacy of Miocene diversity in that region. (Abstract shortened by UMI.)
Subject:Biological sciences; Biogeography; Coral reef; Giant clams; Symbiodinium; Tridacnidae; Symbiosis; Ecology; Evolution and Development; Biological oceanography; 0416:Biological oceanography; 0329:Ecology; 0412:Evolution and Development
Added Entry:J. H. Lipps
Added Entry:University of California, Berkeley