رکورد قبلیرکورد بعدی

" Geospatial analysis of spaceborne remote sensing data for assessing disaster impacts and modeling surface runoff in the built-environment "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 55668
Doc. No : TL25622
Call number : ‭3358363‬
Main Entry : Bikila Teklu Wodajo
Title & Author : Geospatial analysis of spaceborne remote sensing data for assessing disaster impacts and modeling surface runoff in the built-environment\ Bikila Teklu Wodajo
College : The University of Mississippi
Date : 2009
Degree : Ph.D.
student score : 2009
Page No : 458
Abstract : Every year, coastal disasters such as hurricanes and floods claim hundreds of lives and severely damage homes, businesses, and lifeline infrastructure. This research was motivated by the 2005 Hurricane Katrina disaster, which devastated the Mississippi and Louisiana Gulf Coast. The primary objective was to develop a geospatial decision-support system for extracting built-up surfaces and estimating disaster impacts using spaceborne remote sensing satellite imagery. Pre-Katrina 1-m Ikonos imagery of a 5km × 10km area of Gulfport, Mississippi, was used as source data to develop the built-up area and natural surfaces or BANS classification methodology. Autocorrelation of 0.6 or higher values related to spectral reflectance values of groundtruth pixels were used to select spectral bands and establish the BANS decision criteria of unique ranges of reflectance values. Surface classification results using GeoMedia Pro geospatial analysis for Gulfport sample areas, based on BANS criteria and manually drawn polygons, were within ±7% of the groundtruth. The difference between the BANS results and the groundtruth was statistically not significant. BANS is a significant improvement over other supervised classification methods, which showed only 50% correctly classified pixels. The storm debris and erosion estimation or SDE methodology was developed from analysis of pre- and post-Katrina surface classification results of Gulfport samples. The SDE severity level criteria considered hurricane and flood damages and vulnerability of inhabited built-environment. A linear regression model, with +0.93 Pearson R-value, was developed for predicting SDE as a function of pre-disaster percent built-up area. SDE predictions for Gulfport sample areas, used for validation, were within ±4% of calculated values. The damage cost model considered maintenance, rehabilitation and reconstruction costs related to infrastructure damage and community impacts of Hurricane Katrina. The developed models were implemented for a study area along I-10 considering the predominantly flood-induced damages in New Orleans. The BANS methodology was calibrated for 0.6-m QuickBird2 multispectral imagery of Karachi Port area in Pakistan. The results were accurate within ±6% of the groundtruth. Due to its computational simplicity, the unit hydrograph method is recommended for geospatial visualization of surface runoff in the built-environment using BANS surface classification maps and elevations data. Key words. geospatial analysis, satellite imagery, built-environment, hurricane, disaster impacts, runoff.
Subject : Applied sciences; Earth sciences; Built-environment; Geospatial analysis; Disaster impacts; Runoff; Satellite imagery; Hurricanes; Civil engineering; Remote sensing; 0799:Remote sensing; 0543:Civil engineering
Added Entry : B. T. Wodajo
Added Entry : The University of Mississippi
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
3358363_14989.pdf
3358363.pdf
پایان نامه لاتین
متن
application/octet-stream
10.44 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟