|
" Locally Conformal Kähler Geometry "
by Sorin Dragomir, Liviu Ornea.
Document Type
|
:
|
BL
|
Record Number
|
:
|
573638
|
Doc. No
|
:
|
b402857
|
Main Entry
|
:
|
Dragomir, Sorin.
|
Title & Author
|
:
|
Locally Conformal Kähler Geometry\ by Sorin Dragomir, Liviu Ornea.
|
Publication Statement
|
:
|
Boston, MA :: Birkhäuser Boston :: Imprint: Birkhäuser,, 1998.
|
Series Statement
|
:
|
Progress in Mathematics ;; 155
|
ISBN
|
:
|
9781461220268
|
|
:
|
: 9781461273875
|
Contents
|
:
|
1 L.c.K. Manifolds -- 2 Principally Important Properties -- 2.1 Vaisman's conjectures -- 2.2 Reducible manifolds -- 2.3 Curvature properties -- 2.4 Blow-up -- 2.5 An adapted cohomology -- 3 Examples -- 3.1 Hopf manifolds -- 3.2 The Inoue surfaces -- 3.3 A generalization of Thurston's manifold -- 3.4 A four-dimensional solvmanifold -- 3.5 SU(2) x S1 -- 3.6 Noncompact examples -- 3.7 Brieskorn & Van de Ven's manifolds -- 4 Generalized Hopf manifolds -- 5 Distributions on a g.H. manifold -- 6 Structure theorems -- 6.1 Regular Vaisman manifolds -- 6.2 L.c.K.0 manifolds -- 6.3 A spectral characterization -- 6.4 k-Vaisman manifolds -- 7 Harmonic and holomorphic forms -- 7.1 Harmonic forms -- 7.2 Holomorphic vector fields -- 8 Hermitian surfaces -- 9 Holomorphic maps -- 9.1 General properties -- 9.2 Pseudoharmonic maps -- 9.3 A Schwarz lemma -- 10 L.c.K. submersions -- 10.1 Submersions from CH?n -- 10.2 L.c.K. submersions -- 10.3 Compact total space -- 10.4 Total space a g.H. manifold -- 11 L.c. hyperKähler manifolds -- 12 Submanifolds -- 12.1 Fundamental tensors -- 12.2 Complex and CR submanifolds -- 12.3 Anti-invariant submanifolds -- 12.4 Examples -- 12.5 Distributions on submanifolds -- 12.6 Totally umbilical submanifolds -- 13 Extrinsic spheres -- 13.1 Curvature-invariant submanifolds -- 13.2 Extrinsic and standard spheres -- 13.3 Complete intersections -- 13.4 Yano's integral formula -- 14 Real hypersurfaces -- 14.1 Principal curvatures -- 14.2 Quasi-Einstein hypersurfaces -- 14.3 Homogeneous hypersurfaces -- 14.4 Type numbers -- 14.5 L. c. cosymplectic metrics -- 15 Complex submanifolds -- 15.1 Quasi-Einstein submanifolds -- 15.2 The normal bundle -- 15.3 L.c.K. and Kähler submanifolds -- 15.4 A Frankel type theorem -- 15.5 Planar geodesic immersions -- 16 Integral formulae -- 16.1 Hopf fibrations -- 16.2 The horizontal lifting technique -- 16.3 The main result -- 17 Miscellanea -- 17.1 Parallel IInd fundamental form -- 17.2 Stability -- 17.3 f-Structures -- 17.4 Parallel f-structure P -- 17.5 Sectional curvature -- 17.6 L. c. cosymplectic structures -- 17.7 Chen's class -- 17.8 Geodesic symmetries -- 17.9 Submersed CR submanifolds -- A Boothby-Wang fibrations -- B Riemannian submersions.
|
Abstract
|
:
|
. E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
|
Subject
|
:
|
Mathematics.
|
Subject
|
:
|
Geometry.
|
Subject
|
:
|
Global differential geometry.
|
Added Entry
|
:
|
Ornea, Liviu.
|
Added Entry
|
:
|
SpringerLink (Online service)
|
| |