رکورد قبلیرکورد بعدی

" Mesoscopic Physics of Complex Materials "


Document Type : BL
Record Number : 573648
Doc. No : b402867
Main Entry : Chow, T. S.
Title & Author : Mesoscopic Physics of Complex Materials\ by T. S. Chow.
Publication Statement : New York, NY :: Springer New York,, 2000.
Series Statement : Graduate Texts in Contemporary Physics,
ISBN : 9781461221081
: : 9781461274179
Contents : 1 Overview -- 1.1 Statistical Dynamics -- 1.2 Fluid Dispersions -- 1.3 Relaxation in Solids -- 1.4 Nanocomposites -- 1.5 Fractal Surfaces -- Appendix 1A Viscoelasticity -- 2 Brownian Motion -- 2.1 Markovian Process -- 2.2 Langevin Equation -- 2.3 Random Force Correlation -- 2.4 Fokker-Planck Equation -- 2.5 Memory Effect -- Appendix 2A The Navier-Stokes Equation -- Appendix 2B The Liouville Theorem -- 3 Dynamic Response -- 3.1 Linear Response Theory -- 3.2 Correlation Functions -- 3.3 Generalized Susceptibility -- 3.4 Fluctuation-Dissipation Theorem -- 3.5 Non-Markovian and Nonlocal Relations -- 3.6 Relaxation Time -- 3.7 The Master Equation -- 4 Colloidal Dynamics -- 4.1 Stokesian Dynamics -- 4.2 Anistropic Viscosities -- 4.3 Lattice Model -- 4.4 Concentrated Dispersions -- 4.5 Percolation Transition -- 4.6 Memory Function -- 4.7 Dynamic Viscosities -- 4.8 Mesoscopic Dynamics -- 4.9 Shear Thinning -- 4.10 Colloid Growth Model -- 4.11 Polymer Gels -- Appendix 4A Fractals -- 5 Glassy-State Relaxation -- 5.1 Equilibrium State -- 5.2 Free-Volume Distribution -- 5.3 Fractal Dynamic Theory of Glasses -- 5.4 Relaxation Function and Time -- 5.5 Relaxation Spectum -- 5.6 Volume Relaxation and Recovery -- 5.7 PVT Equation of State -- 6 Glassy Polymers -- 6.1 Glass Transition -- 6.2 Physical Aging -- 6.3 Dynamic Viscoelastic Properties -- 6.4 Yield Behavior -- 6.5 Stress-Induced Glass Transition -- 6.6 Activation Volume Tensor -- 6.7 Nonlinear Stress-Strain Relationships -- 7 Polymer Composites -- 7.1 Anisotropic Elasticity -- 7.2 Elastic Constants -- 7.3 Thermal Expansion -- 7.4 Stress Concentration -- 7.5 Nonequilibrium Mechanical Properties -- 7.6 Compatible Polymer Blends -- 7.7 Molecular Composites -- 7.8 Nanocomposites -- Appendix 7A Eshelby's Tensor -- 8 Rough Surfaces and Interfaces -- 8.1 Fractal Surfaces -- 8.2 Noise and Fluctuations -- 8.3 Fluctuations of Contact Line -- 8.4 Wetting and Adhesion -- 8.5 Critical Surface Tension -- 8 6 Dynamics of Wetting -- 8.7 Adhesional Friction -- 8.8 Deformational Friction -- 8.9 Diffuse Scattering -- 8.10 Surface Growth -- Appendix 8A Surface Forces.
Abstract : This book is intended to provide a cross-disciplinary study of the physical prop erties of complex fluids, solids, and interfaces as a function of their mesoscopic structures. Because of the disorder and dissipate nature of these structures, em phasis is placed on nonequilibrium phenomena. These phenomena are the active research areas of soft condensed matter, and it is impossible to cover them all in one book. Therefore, we have limited the scope by selecting a variety of important current systems that (l) present high values to both science and technology on the basis of my own preference and expertise and (2) have not been put together coherently in the form of a book. We then show the underlying connections and parallels between topics as diverse as critical phenomena in colloidal dynamics, glass state relaxation and deformation, reinforced polymer composites, molecular level mixing in nanocomposites, and microscopic interactions of rough surfaces and interfaces. At the same time, each chapter is designed to be directly accessible to readers, and the need for going through the previous chapters has been kept to the minimum. It is a reasonably short book that is not designed to review all of the recent work that spans many disciplines. Instead, we attempt to establish a general framework for the fundamental understanding and the practical development of new materials that cannot be designed by the trial-and-error methods.
Subject : Physics.
Added Entry : SpringerLink (Online service)
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟