|
" High-Pressure Shock Compression of Solids III "
edited by Lee Davison, Mohsen Shahinpoor.
Document Type
|
:
|
BL
|
Record Number
|
:
|
573657
|
Doc. No
|
:
|
b402876
|
Main Entry
|
:
|
Davison, Lee.
|
Title & Author
|
:
|
High-Pressure Shock Compression of Solids III\ edited by Lee Davison, Mohsen Shahinpoor.
|
Publication Statement
|
:
|
New York, NY :: Springer New York,, 1998.
|
Series Statement
|
:
|
High-Pressure Shock Compression of Condensed Matter
|
ISBN
|
:
|
9781461221944
|
|
:
|
: 9781461274544
|
Contents
|
:
|
1 Equation of State at High Pressure -- 1.1. Introduction -- 1.2. General Considerations -- 1.3. Some Results -- 1.4. Summary -- References -- 2 Molecular Dynamics Analysis of Shock Phenomena -- 2.1. Introduction -- 2.2. Model and Methods -- 2.3. Nonenergetic A2 Piston-Driven Simulations -- 2.4. Energetic Chemically-Sustained Shock Waves -- 2.5. Conclusions -- Acknowledgments -- References -- 3 Mechanisms of Elastoplastic Response of Metals to Impact -- 3.1. Introduction -- 3.2. Dislocation Motion -- 3.3. Plastic Strain Rate -- 3.4. Comparison with Experiments -- 3.5. High-Amplitude Shock Loading -- 3.6. Elastic and Plastic Waves in Shocks -- 3.7. Electroplastic Effects -- 3.8. Impediments to Dislocation Motion and Crystal Failure -- 3.9. Energy Dissipation by Moving Dislocations -- 3.10. Conclusions -- Acknowledgments -- References -- 4 Molecular Processes in a Shocked Explosive: Time-Resolved Spectroscopy of Liquid Nitromethane -- 4.1. Introduction -- 4.2. Optical Spectroscopy Probes -- 4.3. Shock Response of Nitromethane and Sensitized Nitromethane -- 4.4. Summary and Conclusions -- Acknowledgments -- References -- 5 Effects of Shock Compression on Ceramic Materials -- 5.1. Introduction -- 5.2. Shock Compression Studies on Some Selected Ceramic Materials -- 5.3. Yielding Mechanism and Correlation with Material Characterization -- 5.4. Effects of Shock Compression on Shock-Induced Phase Transition -- 5.5. Concluding Remarks -- References -- 6 Response of High-Strength Ceramics to Plane and Spherical Shock Waves -- 6.1. Introduction -- 6.2. Elements of Experimental Strategy -- 6.3. Uniaxial Deformation by a Plane Shock Wave -- 6.4. Triaxial Deformation by a Divergent Spherical Wave -- 6.5. Conclusions, Prospects, and Recommendations -- References -- 7 Initiation and Propagation of Detonation in Condensed-Phase High Explosives -- 7.1. Introduction -- 7.2. Brief History of Condensed-Phase Explosive Technology -- 7.3. Planar Steady Detonation Theory -- 7.4. Equations Governing Reactive Flow -- 7.5. Initiation of Detonation -- 7.6. 2D Steady Detonation in Homogeneous and Heterogeneous Materials -- 7.7. Properties of High Explosives -- 7.8. Initiation and Detonation Measurement Techniques -- 7.9. Summary -- 7.10. Glossary -- Acknowledgments -- References -- 8 Analysis of Shock-Induced Damage in Fiber-Reinforced Composites -- 8.1. Introduction -- 8.2. Background -- 8.3. Micromechanical Model -- 8.4. Constitutive Models -- 8.5. Numerical Implementation -- 8.6. Computational Simulations -- 8.7. Summary -- Acknowledgments -- References -- 9 Attenuation of Longitudinal Elastoplastic Pulses -- 9.1. Introduction -- 9.2. Stress and Deformation Fields -- 9.3. Longitudinal Shocks -- 9.4. Material Response Model: Ideal Elastoplasticity at Small Strain -- 9.5. Shock Propagation in a Slab -- 9.6. Elastoplastic Pulse Attenuation -- 9.7. Summary and Conclusions -- 9.A. Appendix: Field Values for Pulse Attenuation in Range C -- 9.B. Appendix: Field Values for Pulse Attenuation in Range D -- 9.C. Appendix: Field Values for Pulse Attenuation in Range E -- References -- Author Index.
|
Abstract
|
:
|
Developments in experimental methods are providing an increasingly detailed understanding of shock compression phenomena on the bulk, intermediate, and molecular scales. This third volume in a series of reviews of the curent state of knowledge covers several diverse areas. The first group of chapters addresses fundamental physical and chemical aspects of the response of condensed matter to shock comression: equations of state, molecular-dynamic analysis, deformation of materials, spectroscopic methods. Two further chapters focus on a particular group of materials: ceramics. Another chapter discusses shock-induced reaction of condensed-phase explosives. And a final pair of chapters considers shock phenomena at low stresses from the point of view of continuum mechanics.
|
Subject
|
:
|
Physics.
|
Added Entry
|
:
|
Shahinpoor, Mohsen.
|
Added Entry
|
:
|
SpringerLink (Online service)
|
| |