رکورد قبلیرکورد بعدی

" Manifolds with cusps of rank one "


Document Type : BL
Record Number : 604277
Doc. No : b433496
Main Entry : Müller, Werner,1949-
Title & Author : Manifolds with cusps of rank one : spectral theory and L²-index theorem /\ Werner Müller
Publication Statement : Berlin ;New York :: Springer-Verlag,, ©1987
Series Statement : Lecture notes in mathematics,; 1244
Page. NO : 1 online resource (ix, 158 pages)
ISBN : 3540477624 (electronic bk.)
: : 9783540477624 (electronic bk.)
: 0387172106
: 0387176969
: 3540176969
: 9780387172101
: 9780387176963
: 9783540176961
Notes : "Subseries: Mathematisches Institut der Universität und Max-Planck-Institut für Mathematik, Bonn, vol. 9."
Bibliographies/Indexes : Includes bibliographical references (p. [150]-154) and index
Contents : Preliminaries -- Cusps of rank one -- The heat equation on the cusp -- The Neumann Laplacian on the cusp -- Manifolds with cusps of rank one -- The spectral resolution of H -- The heat kernel -- The Eisenstein functions -- The spectral shift function -- The L -index of generalized Dirac operators -- The unipotent contribution to the index -- The Hirzebruch conjecture -- References -- Subject index -- List of notations
Abstract : The manifolds investigated in this monograph are generalizations of (XX)-rank one locally symmetric spaces. In the first part of the book the author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theory is taken to derive the main results about the spectral resolution of these operators. The second part of the book deals with the derivation of an index formula for generalized Dirac operators on manifolds with cusps of rank one. This index formula is used to prove a conjecture of Hirzebruch concerning the relation of signature defects of cusps of Hilbert modular varieties and special values of L-series. This book is intended for readers working in the field of automorphic forms and analysis on non-compact Riemannian manifolds, and assumes a knowledge of PDE, scattering theory and harmonic analysis on semisimple Lie groups
Subject : Index theorems
Subject : Manifolds (Mathematics)
Subject : Spectral theory (Mathematics)
Subject : Index, Théorie de l' (mathématiques)
Subject : Théorie spectrale (mathématiques)
Subject : Variétés (mathématiques)
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟