Document Type
|
:
|
BL
|
Record Number
|
:
|
627632
|
Doc. No
|
:
|
dltt
|
Main Entry
|
:
|
Bishop, Christopher M.
|
Title & Author
|
:
|
Pattern recognition and machine learning /\ Christopher M. Bishop
|
Edition Statement
|
:
|
Corrected at 8th printing 2009
|
Series Statement
|
:
|
Information science and statistics
|
Page. NO
|
:
|
xx, 738 pages :: illustrations (chiefly color) ;; 24 cm
|
ISBN
|
:
|
9780387310732
|
|
:
|
: 0387310738
|
Notes
|
:
|
Textbook for graduates
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references (pages 711-728) and index
|
Contents
|
:
|
Introduction. Example : polynomial curve fitting ; Probability theory ; Model selection ; The curse of dimensionality Decision theory ; Information theory -- Probability distributions. Binary vehicles ; Multinomial variables ; The Gaussian distribution ; The exponential family ; Nonparametric methods -- Linear models for regression. Linear basis function models ; The bias-variance decomposition ; Bayesian linear regression ; Bayesian model comparison ; The evidence approximation ; Limitations of fixed basis functions -- Linear models for classification. Discriminant functions ; Probabilistic generative models ; Probabilistic discrimitive models ; The Laplace approximation ; Bayesian logistic regression -- Neural networks. Feed-forward network functions ; Network training ; Error backpropagation ; The Hessian matrix ; Regularization in neural networks ; Mixture density networks ; Bayesian neural networks -- Kernel methods. Dual representations ; Constructing kernals ; Radial basis function networks ; Gaussian processes -- Sparse Kernel machines. Maximum margin classifiers ; Relevance vector machines -- Graphical models. Bayesian networks ; Conditional independence ; Markov random fields ; Inference in graphical models -- Mixture models and EM. K-means clustering ; Mixtures of Gaussians ; An alternative view of EM ; The EM algorithm in general -- Approximate inference. Variational inference ; Illustration : variational mixture of Gaussians ; Variational linear regression ; Exponential family distributions ; Local variational methods ; Variational logistic regression ; Expectation propagation -- Sampling methods. Basic sampling algorithms ; Markov chain Monte Carlo ; Gibbs sampling ; Slice sampling ; The hybrid Monte Carlo algorithm ; Estimating the partition function -- Continuous latent variables. Principal component analysis ; Probabilistic PCA ; Kernel PCA ; Nonlinear latent variable models -- Sequential data. Markoc models ; Hidden Markov models ; Linear dynamical systems -- Combining models. Bayesian model averaging ; Committees ; Boosting ; Tree-based models ; Conditional mixture models -- Data sets -- Probability distributions -- Properties of matrices -- Calculus of variations -- Lagrange multipliers
|
Subject
|
:
|
Machine learning
|
Subject
|
:
|
Pattern perception
|
Subject
|
:
|
Pattern recognition systems
|
LC Classification
|
:
|
Q327.B52 2009
|