| Document Type | : | BL | 
                
                    | Record Number | : | 640520 | 
                
                    | Doc. No | : | dltt | 
                
                    | Main Entry | : | Blangiardo, Marta. | 
                
                    | Title & Author | : | Spatial and spatio-temporal Bayesian models with R-INLA /\  by Marta Blangiardo and Michela Cameletti | 
                
                    | Page. NO | : | 1 online resource | 
                
                    | ISBN | : | 9781118950197 | 
                
                    |  | : | : 1118950194 | 
                
                    |  | : | : 9781118950210 | 
                
                    |  | : | : 1118950216 | 
                
                    |  | : | : 9781118950203 | 
                
                    |  | : | : 1118950208 | 
                
                    |  | : | : 1118326555 | 
                
                    |  | : | : 9781118326558 | 
                
                    |  | : | 9781118326558 | 
                
                    | Bibliographies/Indexes | : | Includes bibliographical references and index | 
                
                    | Contents | : | Introduction -- Why spatial and spatio-temporal statistics? -- Why do we use Bayesian methods for modeling spatial and spatio-temporal structures? -- Why INLA?p3 -- Datasets -- National Morbidity, Mortality, and Air Pollution Study -- Average income in Swedish municipalities -- Stroke in Sheffield -- Ship accidents -- CD4 in HIV patients -- Lip cancer in Scotland -- Suicides in London -- Brian cancer in Navarra, Spain -- Respiratory hospital admission in Turin province -- Malaria in the Gambia -- Swiss rainfall data -- Lung cancer mortality in Ohio -- Low birth weight births in Georgia -- Air pollution in Piemonte -- Introduction to R -- The R language -- R objects -- Data and session management -- Packages -- Programming in R -- Basic statistical analysis with R -- Introduction to Bayesian methods -- Bayesian philosophy -- Thomas Bayes and Simon Pierre Laplace -- Bruno de Finetti and colleagues -- After the Second World War -- The 1990s and beyond -- Basic probability elements -- What is an event? -- Probability of events -- Conditional probability -- Bayes theorem -- Prior and posterior distributions -- Bayesian inference -- Working with the posterior distribution -- Choosing the prior distribution -- Type of distribution -- Conjugacy -- Noninformative or informative prior -- Bayesian computing -- Monte Carlo integration -- Monte Carlo method for Bayesian inference -- Probability distributions and random number generation in R -- Examples of Monte Carlo simulation -- Markov chain Monte Carlo methods -- Gibbs sampler -- Metropolis - Hastings algorithm -- MCMC implementation: software and output analysis -- The integrated nested Laplace approximations algorithm -- Laplace approximation -- INLA setting: the class of latent Gaussian models -- Approximate Bayesian inference with INLA -- The R - INLA package -- How INLA works: step-by-step example -- Bayesian regression and hierarchical models -- Linear regression -- Comparing the Bayesian to the classical regression model -- Example: studying the relationship between temperature and PM10 -- Nonlinear regression: random walk -- Example: studying the relationship between average household age and income in Sweden -- Generalized linear models -- Hierarchical models -- Exchangeability -- INLA as a hierarchical model -- Hierarchical regression -- Example: a hierarchical model for studying CD4 counts in AIDS patients -- Example: a hierarchical model for studying lip cancer in Scotland -- Example: studying stroke mortality in Sheffield (UK) -- Prediction -- Model checking and selection -- Methods based on the predictive distribution -- Methods based on the deviance -- Spatial modeling -- Areal data - GMRF -- Disease mapping -- BYM model: suicides in London -- Ecological regression -- Zero-inflated models -- Zero-inflated Poisson model: brain cancer in Navarra -- Zero-inflated binomial model: air pollution and respiratory hospital admissions -- Geostatistical data -- The stochastic partial differential equation approach -- Nonstationary Gaussian field -- SPDE within R - INLA -- SPDE toy example with simulated data -- Mesh construction -- The observation or projector matrix -- More advanced operations through the inla stack function -- Spatial prediction -- Prior specification for the stationary case -- Example with simulated data -- SPDE for Gaussian response: Swiss rainfall data -- SPDE with nonnormal outcome: malaria in the Gambia -- Prior specification for the nonstationary case -- Example with simulated data -- Spatio-temporal models -- Spatio-temporal disease mapping -- Nonparametric dynamic trend -- Space-time interactions -- Spatio-temporal modeling particulate matter concentration -- Change of support -- Advanced modeling / Elias T. Krainski -- Bivariate model for spatially misaligned data -- Bivariate model for spatially misaligned data -- Joint model with Gaussian distributions -- Joint model with non-Gaussian distributions -- Semicontinuous model to daily rainfall -- Spatio-temporal dynamic models -- Dynamic model with Besag proper specification -- Dynamic model with generic specification -- Space-time model lowering the time resolution -- Spatio-temporal model | 
                
                    | Subject | : | Bayesian statistical decision theory. | 
                
                    | Subject | : | Spatial analysis (Statistics) | 
                
                    | Subject | : | Asymptotic distribution (Probability theory) | 
                
                    | Subject | : | R (Computer program language) | 
                
                    | Dewey Classification | : | 519.5/42 | 
                
                    | LC Classification | : | QA279.5 | 
                
                    | Added Entry | : | Cameletti, Michela. | 
                
                    | Added Entry | : | Ohio Library and Information Network. |