|
" Data-variant kernel analysis / "
Yuichi Motai, Sensory Intelligence Laboratory, Department of Electrical and Computer Engineering, Virginia Commonwealth University Richmond, VA
Document Type
|
:
|
BL
|
Record Number
|
:
|
641322
|
Doc. No
|
:
|
dltt
|
Main Entry
|
:
|
Motai, Yuichi.
|
Title & Author
|
:
|
Data-variant kernel analysis /\ Yuichi Motai, Sensory Intelligence Laboratory, Department of Electrical and Computer Engineering, Virginia Commonwealth University Richmond, VA
|
Series Statement
|
:
|
Wiley series on adaptive and cognitive dynamic systems
|
Page. NO
|
:
|
1 online resource
|
ISBN
|
:
|
9781119019343
|
|
:
|
: 1119019346
|
|
:
|
: 9781119019336
|
|
:
|
: 1119019338
|
|
:
|
: 9781119019350
|
|
:
|
: 1119019354
|
|
:
|
111901932X
|
|
:
|
9781119019329
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references and index
|
Contents
|
:
|
Survey -- Introduction of Kernel Analysis -- Kernel Offline Learning -- Choose the Appropriate Kernels -- Adopt KA into the Traditionally Developed Machine Learning Techniques -- Structured Database with Kernel -- Distributed Database with Kernel -- Multiple Database Representation -- Kernel Selections Among Heterogeneous Multiple Databases -- Multiple Database Representation KA Applications to Distributed Databases -- Kernel Online Learning -- Kernel-Based Online Learning Algorithms -- Adopt "Online" KA Framework into the Traditionally Developed Machine Learning Techniques -- Relationship Between Online Learning and Prediction Techniques -- Prediction with Kernels -- Linear Prediction -- Kalman Filter -- Finite-State Model -- Autoregressive Moving Average Model -- Comparison of Four Models -- Future Direction and Conclusion -- References -- Offline Kernel Analysis -- Introduction -- Kernel Feature Analysis -- Kernel Basics -- Kernel Principal Component Analysis (KPCA) -- Accelerated Kernel Feature Analysis (AKFA) -- Comparison of the Relevant Kernel Methods -- Principal Composite Kernel Feature Analysis (PC-KFA) -- Kernel Selections -- Kernel Combinatory Optimization -- Experimental Analysis -- Cancer Image Datasets -- Kernel Selection -- Kernel Combination and Reconstruction -- Kernel Combination and Classification -- Comparisons of Other Composite Kernel Learning Studies -- Computation Time -- Conclusion -- References -- Group Kernel Feature Analysis -- Introduction -- Kernel Principal Component Analysis (KPCA) -- Kernel Feature Analysis (KFA) for Distributed Databases -- Extract Data-Dependent Kernels Using KFA -- Decomposition of Database Through Data Association via Recursively Updating Kernel Matrices -- Group Kernel Feature Analysis (GKFA) -- Composite Kernel: Kernel Combinatory Optimization -- Multiple Databases Using Composite Kernel -- Experimental Results -- Cancer Databases -- Optimal Selection of Data-Dependent Kernels -- Kernel Combinatory Optimization -- Composite Kernel for Multiple Databases -- K-NN Classification Evaluation with ROC -- Comparison of Results with Other Studies on Colonography -- Computational Speed and Scalability Evaluation of GKFA -- Conclusions -- References -- Online Kernel Analysis -- Introduction -- Kernel Basics: A Brief Review -- Kernel Principal Component Analysis -- Kernel Selection -- Kernel Adaptation Analysis of PC-KFA -- Heterogeneous vs. Homogeneous Data for Online PC-KFA -- Updating the Gram Matrix of the Online Data -- Composite Kernel for Online Data -- Long-Term Sequential Trajectories with Self-Monitoring -- Reevaluation of Large Online Data -- Validation of Decomposing Online Data into Small Chunks -- Experimental Results -- Cancer Datasets -- Selection of Optimum Kernel and Composite Kernel for Offline Data I -- Selection of Optimum Kernel and Composite Kernel for the New Online Sequences -- Classification of Heterogeneous Versus Homogeneous Data -- Online Learning Evaluation of Long-term Sequence -- Evaluation of Computational Time -- Conclusions -- References -- Cloud Kernel Analysis -- Introduction -- Cloud Environments -- Server Specifications of Cloud Platforms -- Cloud Framework of KPCA for AMD -- AMD for Cloud Colonography -- AMD Concept -- Data Configuration of AMD -- Implementation of AMD for Two Cloud Cases -- Parallelization of AMD -- Classification Evaluation of Cloud Colonography -- Databases with Classification Criteria -- Classification Results -- Cloud Computing Performance -- Cloud Computing Setting with Cancer Databases -- Computation Time -- Memory Usage -- Running Cost -- Parallelization -- Conclusions -- References -- Predictive Kernel Analysis -- Introduction -- Kernel Basics -- KPCA and AKFA -- Stationary Data Training -- Kernel Selection -- Composite Kernel: Kernel Combinatory Optimization -- Longitudinal Nonstationary Data with Anomaly/Normal Detection -- Updating the Gram Matrix Based on Nonstationary Longitudinal Data -- Composite Kernel for Nonstationary Data -- Longitudinal Sequential Trajectories for Anomaly Detection and Prediction -- Anomaly Detection of Nonstationary Small Chunks Datasets -- Anomaly Prediction of Long-Time Sequential Trajectories -- Classification Results -- Cancer Datasets -- Selection of Optimum Kernel and Composite Kernel for Stationary Data -- Comparisons with Other Kernel Learning Methods -- Anomaly Detection for the Nonstationary Data -- Longitudinal Prediction Results -- Large Nonstationary Sequential dataset for Anomaly Detection -- Time Horizontal Prediction for Risk Factor Analysis of Anomaly Long-Time Sequential Trajectories -- Computational Time for Complexity Evaluation -- Conclusions -- References -- Conclusion
|
Abstract
|
:
|
"This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications"--
|
Subject
|
:
|
Kernel functions.
|
Subject
|
:
|
Big data-- Mathematics.
|
Dewey Classification
|
:
|
515/.9
|
LC Classification
|
:
|
QA353.K47
|
Added Entry
|
:
|
Ohio Library and Information Network.
|
| |