رکورد قبلیرکورد بعدی

" Decision forests for computer vision and medical image analysis "


Document Type : BL
Record Number : 666068
Doc. No : dltt
Title & Author : Decision forests for computer vision and medical image analysis\ A. Criminisi, J. Shotton, editors
Publication Statement : London ;New York :: Springer,, c2013
Series Statement : Advances in Computer Vision and Pattern Recognition
Page. NO : 1 online resource (366 p.)
ISBN : 9781447149293 (electronic bk.)
: : 1447149297 (electronic bk.)
: 9781447149286
Bibliographies/Indexes : Includes bibliographical references and index
Contents : Chapter 1: Overview and scope -- Chapter 2: Notation and terminology -- Chapter 3: Introduction: the abstract forest model -- Chapter 4: Classification forests -- Chapter 5: Regression forests -- Chapter 6: Density forests -- Chapter 7: Manifold forests -- Chapter 8: Semi-supervised classification forests -- Chapter 9: Keypoint recognition using random forests and random ferns -- Chapter 10: Extremely randomized trees and random subwindows for image classification, annotation, and retrieval -- Chapter 11: Class-specific hough forests for object detection -- Chapter 12: Hough-based tracking of deformable objects -- Chapter 13: Efficient human pose estimation from single depth images -- Chapter 14: Anatomy detection and localization in 3D medical images -- Chapter 15: Semantic texton forests for image categorization and segmentation -- Chapter 16: Semi-supervised video segmentation using decision forests -- Chapter 17: Classification forestts for semantic segmentation of brain lesions in multi-channel MRI -- Chapter 18: Manifold forests for multi-modality classification of Alzheimer's Disease -- Chapter 19: Entanglement and differentiable information gain maximization -- Chapter 20: Decision tree fields: an efficient non-parametric random field model for image labeling -- Chapter 21: Efficient implementation of decision forests -- Chapter 22: The Sherwood Software Library -- Chapter 23: Conclusions
Abstract : This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests
Subject : Decision trees
Subject : Computer vision
Subject : Image processing-- Digital techniques
Subject : Diagnostic imaging-- Digital techniques
Dewey Classification : ‭511.52‬
LC Classification : ‭QA166.2‬
: ‭QA166.2‬
Added Entry : Criminisi, Antonio,1972-
: Shotton, J
Added Entry : Ohio Library and Information Network
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟