| Document Type
|
:
|
BL
|
| Record Number
|
:
|
695337
|
| Doc. No
|
:
|
b517526
|
| Main Entry
|
:
|
Riggelsen, Carsten
|
| Title & Author
|
:
|
Approximation methods for efficient learning of Bayesian networks /\ Carsten Riggelsen
|
| Publication Statement
|
:
|
Amsterdam ;Washington, DC :: IOS Press,, [2008]
|
|
|
:
|
, ©2008
|
| Series Statement
|
:
|
Frontiers in artificial intelligence and applications ;
|
|
|
:
|
Dissertations in artificial intelligence
|
| Page. NO
|
:
|
vii, 137 pages :: illustrations ;; 25 cm
|
| ISBN
|
:
|
1586038214
|
|
|
:
|
: 9781586038212
|
| Bibliographies/Indexes
|
:
|
Includes bibliographical references (pages [133]-137)
|
| Contents
|
:
|
Random variables and conditional independence -- Graph theory -- Markov properties -- Bayesian networks -- Bayesian network specification -- Learning Bayesian networks from data -- Learning parameters -- Learning models -- Monte Carlo methods -- Markov chain Monte Carlo : MCMC -- Learning models via MCMC -- Learning from incomplete data -- Principled iterative methods -- Ad-hoc and heuristic methods
|
| Subject
|
:
|
Bayesian statistical decision theory
|
| Subject
|
:
|
Machine learning
|
| Subject
|
:
|
Neural networks (Computer science)
|
| Dewey Classification
|
:
|
519.5/42
|
| LC Classification
|
:
|
QA279.5.R54 2008
|