|
" Non-classical Logics and Their Applications to Fuzzy Subsets A Handbook of the Mathematical Foundations of Fuzzy Set Theory. "
Hh̲le, Ulrich; Klement, Erich Peter
Document Type
|
:
|
BL
|
Record Number
|
:
|
716630
|
Doc. No
|
:
|
b536314
|
Main Entry
|
:
|
Hh̲le, Ulrich; Klement, Erich Peter
|
Title & Author
|
:
|
Non-classical Logics and Their Applications to Fuzzy Subsets A Handbook of the Mathematical Foundations of Fuzzy Set Theory.\ Hh̲le, Ulrich; Klement, Erich Peter
|
Publication Statement
|
:
|
Springer Verlag, 2013
|
ISBN
|
:
|
9401102155
|
|
:
|
: 9789401102155
|
Contents
|
:
|
Preface. Introduction. Part A: Algebraic Foundations of Non-Classical Logics. I. alpha-Complete MV-algebras; L.P. Belluce. II. On MV-algebras of continuous functions; A. Di Nola, S. Sessa. III. Free and projective Heyting and monadic Heyting algebras; R. Grigolia. IV. Commutative, residuated l-monoids; U. Hoehle. V. A proof of the completeness of the infinite-valued calculus of Lukasiewicz with one variable; D. Mundici, M. Pasquetto. Part B: Non-Classical Models and Topos-Like Categories. VI. Presheaves over GL-monoids; U. Hoehle. VII. Quantales: Quantal sets; C.J. Mulvey, M. Nawaz. VIII. Categories of fuzzy sets with values in a quantale or projectale; L.N. Stout. IX. Fuzzy logic and categories of fuzzy sets; O. Wyler. Part C: General Aspects of Non-Classical Logics. X. Prolog extensions to many-valued logics; F. Klawonn. XI. Epistemological aspects of many-valued logics and fuzzy structures; L.J. Kohout. XII. Ultraproduct theorem and recursive properties of fuzzy logic; V. Novak. Bibliography. Index.
|
LC Classification
|
:
|
QA9.4H454 2013
|
Added Entry
|
:
|
Hh̲le, Ulrich; Klement, Erich Peter
|
| |