|
" Allocation Models and their Use in Economic Planning "
by A.R.G. Heesterman.
Document Type
|
:
|
BL
|
Record Number
|
:
|
724700
|
Doc. No
|
:
|
b544419
|
Main Entry
|
:
|
by A.R.G. Heesterman.
|
Title & Author
|
:
|
Allocation Models and their Use in Economic Planning\ by A.R.G. Heesterman.
|
Publication Statement
|
:
|
Dordrecht: Springer Netherlands, 1971
|
Series Statement
|
:
|
International Studies in Economics and Econometrics, 3
|
Page. NO
|
:
|
1(XIV, 203 Seiten)
|
ISBN
|
:
|
9401030847
|
|
:
|
: 9401030863
|
|
:
|
: 9789401030847
|
|
:
|
: 9789401030861
|
Contents
|
:
|
I. Allocation, Investment and Efficiency Prices in Input-Output Type Models.- I. What is Efficiency?.- 1.1. The Preference Function.- 1.2. The Efficiency Frontier.- 1.3. Dynamic Efficiency.- 1.4. Efficiency Prices and Limiting Prices.- II. The Generalized Input-Output Model.- 2.1. The Primal of the Static Model.- 2.2. The Zero Profit Requirement.- 2.3. The Maximization of G.D.P..- 2.4. Public versus Private Preferences.- 2.5. Arrow's Theorem on the Choice of Processes.- 2.6. Factor Substitution and Output Composition.- 2.7. The (Non) uniqueness of the Price Structure.- 2.8. The Adjusted Plan.- 2.9. The Plan-Orientated Preference Function.- 2.10. Price Adjustment in Input-Output Type Models.- 2.11. External Economies and Non-Convexity.- 2.12. Capacity in Transportation Problems.- III. Inter-Temporal Allocation in the Generalized Model.- 3.1. The Multi-Period Model.- 3.2. The Principle of Discount.- 3.3. The Recursive Formulation.- 3.4. An Example of a Multi-Period Allocation Model.- 3.5. The Dynamized Dual Restrictions.- 3.6. Interest Discount and Depreciation.- 3.7. Technical Change.- 3.8. The Plan-Orientated Intertemporal Preference Function.- 3.9. Some Questions for the Student.- IV. The Balanced Growth Frontier.- 4.1. The Exogenous Rate of Growth.- 4.2. A Demonstration Example of a Balanced Growth Path.- 4.3. The (Balanced Growth) Rate of Interest.- 4.4. The Balanced Growth Transformation Ridge.- V. The Dynamized Leontief Model.- 5.1. Formal Specification of the Model.- 5.2. The Turnpike Rate of Growth.- 5.3. The Turnpike rate of Interest.- 5.4. The Dynamic Input-Output Model and Its Limiting Prices.- VI. Foreign Trade in the National Economy Model.- 6.1. The Accounting Framework.- 6.2. Export and Market Limits.- 6.3. The Dynamic One-Factor Model with Foreign Trade.- II. The Evaluation of Individual Projects.- VII. The Costing Problem.- 7.1. The Investment Decision.- 7.2. The Econometrician and the Accountant.- 7.3. A Short Summary of Methods of Investment Evaluation.- 7.4. Project Evaluation and the Zero Profit Requirement.- 7.5. Natural Limits to Projects.- VIII. Discounted Cash Flow in the Standard Case.- 8.1. Present Value.- 8.2. How to Find the Rate of Interest.- 8.3. Input-Output Plan and Price Adjustment.- 8.4. Sector-Wise Discount.- 8.5. Clusters of Projects.- 8.6. Direct Coordination of Projects.- 8.7. Summary of a Planning Procedure.- 8.8. Some Questions for the Student.- IX. Increasing Returns to Scale.- 9.1. Discussion of the Problem.- 9.2. Planned Surplus Capacity.- 9.3. Project Size and Efficiency Price.- X. Some Special Evaluation Problems in Particular Sectors.- 10.1. Investment in Transport Production.- 10.2. Education.- 10.3. Hospitals.- III. Capita Selecta on Economic Policy.- XI. The Distribution of Outputs.- 11.1. The Functions of Prices.- 11.2. Profits.- 11.3. Duties on Final Outputs.- 11.4. Revenue Taxes.- 11.5. Redistributive Taxation.- 11.6. Rationing.- XII. Opportunity Cost and Exchange Price.- 12.1. Discussion of the Problem.- 12.2. Costing versus Programming.- 12.3. Macro-economic Equilibrium.- 12.4. Technical Change.- 12.5. Import Substitution and the Cost of Foreign Exchange.- 12.6. Underutilization of Resources.- Appendix A. Optimality Conditions.- a.1. The Additive Property of Inequalities.- a.2. The Programming Problem and Its Lagrangean.- a.3. John's Theorem.- a.4. Aggregate Restrictions of Allocation Models.- a.5. The Kuhn-Tucker Theorem for Convex Programming.- Appendix B. Some Conventions of Notation.
|
Abstract
|
:
|
Three different lines of approach have contributed to the theory of optimal planning. One approach considers the problem from the view-point of a national government and its adviser, the econometrician planning speci- alist. A later, well-developed example of a model based on this approach is, for example, the Czech model by Cerny et al.
|
Subject
|
:
|
Economics -- Statistics.
|
Subject
|
:
|
Economics.
|
Subject
|
:
|
Statistics.
|
LC Classification
|
:
|
HB74.M3B937 1971
|
Added Entry
|
:
|
A R G Heesterman
|
| |