|
" Domains and Processes : "
edited by Klaus Keimel, Guo-Qiang Zhang, Ying-Ming Liu, Yi-Xang Chen.
Document Type
|
:
|
BL
|
Record Number
|
:
|
729834
|
Doc. No
|
:
|
b549590
|
Main Entry
|
:
|
edited by Klaus Keimel, Guo-Qiang Zhang, Ying-Ming Liu, Yi-Xang Chen.
|
Title & Author
|
:
|
Domains and Processes : : Proceedings of the 1st International Symposium on Domain Theory Shanghai, China, October 1999\ edited by Klaus Keimel, Guo-Qiang Zhang, Ying-Ming Liu, Yi-Xang Chen.
|
Publication Statement
|
:
|
Dordrecht: Springer Netherlands, 2001
|
Series Statement
|
:
|
Semantic structures in computation, 1.
|
Page. NO
|
:
|
(287 pages)
|
ISBN
|
:
|
9401006547
|
|
:
|
: 9789401006545
|
Contents
|
:
|
1 Encounters Between Topology and Domain Theory --;1 Introduction --;2 Introductory Domain Theory --;3 The Scott Topology --;4 Locally Compact Spaces --;5 Spectral Theory --;6 Round Ideal Completions --;7 Ordered Spaces --;8 Compact Pospaces --;9 Spaces of Maximal Points --;10 The Domain of Closed Formal Balls --;11 Fixed Point Theory --;12 The Probabilistic Power Domain --;13 Open Problems and Research Directions --;14 Topological Appendix --;2 The Lawson Topology on Quasicontinuous Domains --;1 Introduction --;2 Quasicontiuous domains --;3 Strictly complete regularity of the Lawson topology --;3 Uk-admitting dcpos need not be sober --;1 Introduction --;2 Uk-admitting for locally compact dcpo's --;3 Uk-admitting does not always imply sober --;4 The Largest Topologically Cartesian Closed Categories of Domains as Topological Spaces --;1 Introduction and Preliminaries --;2 Relations between tcc and ccc categories --;3 FS is the largest tcc full subcategory of CONT1 --;4 F-FS is the largest tcc full subcategory of CONT --;5 On the Equivalence of Some Approaches to Computability on the Real Line --;1 Introduction --;2 The TTE approach to real number computations --;3 The domain-theoretic approach to real number computability --;4 The language Real PCF --;5 The equivalence results --;6 Concluding remarks --;7 Appendix --;6 The continuous functionals of finite types over the reals --;1 Introduction --;2 The types --;3 The hereditarily total objects --;4 Density and co-density --;5 Limit spaces --;6 The traditional approach --;7 Compact Semantics on Bc-domains --;1 Introduction --;2 Preliminaries and Characterizations for Semantics Continuity --;3 The Compactness Theorem And Applications --;4 Conclusion --;8 Normal Subsets in Abstract Bases --;1 Introduction --;2 Prerequisites --;3 Normal subsets and sub-domains --;4 The dcpo class of abstract bases and a fixed point theorem --;9 Semantics of Logic Programs and Representation of Smyth Powerdomain --;1 Introduction --;2 Domains and information systems --;3 Main representation theorem --;4 Proofs --;5 Examples --;6 Semantics of disjunctive logic programs --;7 Clausal logic over sequent structures --;8 Conclusion --;10 Domains of view: a foundation for specification and analysis --;1 Introduction --;2 Kripke modal transition systems --;3 Fuzzy Kripke modal transition systems --;4 Modal Markov chains --;5 Modal relations --;6 Related work --;11 Semantic Theory and Proof System of Open Bisimulation for the?-Calculus with Mismatching --;1 Introduction --;2 Operational Semantics of the?-Calculus --;3 Open Bisimulation and Its Symbolic Characterization --;4 Proof System for Open Bisimulation --;5 The Weak Case --;6 Conclusions --;12 Axiomatization without Prefix Combinator --;1 Introduction --;2 Preliminaries --;3 Polyadic X-Calculus --;4 A Process Calculus without Precedence --;5 Ground Bisimilarity for Atomic X-Calculus --;6 Axiomatization in the Absence of Prefix, Summation and Match Combinators --;7 Final Remarks.
|
Abstract
|
:
|
Proceedings of the 1st International Symposium on Domain Theory
|
Subject
|
:
|
Computer science.
|
Subject
|
:
|
Logic.
|
Subject
|
:
|
Philosophy (General)
|
LC Classification
|
:
|
QA76.7E358 2001
|
Added Entry
|
:
|
Guo-Qiang Zhang
|
|
:
|
Klaus Keimel
|
|
:
|
Ying-Ming Liu
|
|
:
|
Yi-Xang Chen
|
Parallel Title
|
:
|
Proceedings of the 1st International Symposium on Domain Theory
|
| |