رکورد قبلیرکورد بعدی

" Tissue Culture of Epithelial Cells. "


Document Type : BL
Record Number : 731594
Doc. No : b551380
Main Entry : Taub, Mary
Title & Author : Tissue Culture of Epithelial Cells.\ Taub, Mary
Publication Statement : Springer Verlag, 2012
Page. NO : pages
ISBN : 1468448161
: : 9781468448160
Contents : Section I Domes.- 1 Inducers of Dome Formation in Epithelial Cell Cultures including Agents That Cause Differentiation.- 1. Introduction.- 2. Stimulation of Dome Formation by Inducers of Differentiation.- 2.1. Kinetics of Induction.- 2.2. Inhibition Characteristics.- 2.3. Analogies with Other Cell Culture Model Systems for Differentiation.- 2.4. Inducer-Resistant Variants.- 3. Expression of a Specific, Inducible Differentiated Transport Function in Kidney Epithelial Cell Cultures.- 3.1. Inducibility of Na+-Stimulated Glucose Transport Activity in LLC-PK1 Kidney Cell Cultures.- 3.2. Characteristics of Na+ -Stimulated Glucose Transport Activity Expressed in Apical Membrane Vesicles from LLC-PK1 Cells.- 4. Mechanisms of Action of Inducers on Target Cells.- 4.1. Role of Cyclic AMP Levels.- 4.2. Role of Ca2+.- 4.3. Cellular Targets of Inducers.- 5. Cellular Functions That Contribute to Regulation of Dome Formation.- 5.1. Ion Transport Activities.- 5.2. Occluding Junctions.- 5.3. Adhesion to the Substratum.- 5.4. Cell Polarity.- 5.5. Cytoskeletal Framework.- 6. Hypothesis: Determinants of Epithelial Cell Differentiation.- References.- Section II Electrophysiology and Ion Transport in MDCK Cells.- 2 Electrical Properties of MDCK Cells.- 1. Introduction.- 2. Electrical Properties of the Plasma Membrane of MDCK Cells.- 3. Electrical Properties of the Whole Monolayer of MDCK Cells.- 4. The Paracellular Pathway.- 5. Do Strands Determine the Resistance of the Occluding Junction?.- 6. De Novo Formation of Occluding Junctions.- 7. The Sealing of Occluding Junction.- 8. Microtubules, Microfilaments, and Occluding Junctions.- 9. The Occluding Junction as a Function of Time.- References.- 3 Ion Transport in MDCK Cells.- 1. Introduction.- 2. Blisters.- 3. Ionic Fluxes across the Whole Monolayer.- 4. Ionic Fluxes across the Plasma Membrane.- 5. Effect of Sodium Concentration on Ionic Movements.- 6. Effect of Serum.- 7. Viruses and Ionic Fluxes.- 8. The Mechanism of Response to ADH.- References.- 4 Application of the Microbiological Approach to the Study of Passive Monovalent Salt Transport in a Kidney Epithelial Cell Line, MDCK.- 1. Perspectives in Kidney Physiology.- 2. Definition of Experimental Cell Systems for Examination of Kidney Epithelial function.- 3. The Microbiological Approach Applied to Kidney function.- 4. The Amiloride-Sensitive Na+/H+ Antiporter.- 5. The Loop-Diuretic-Sensitive NaCl/KCl Symporter.- 6. Conclusions.- References.- Section III Transport of Neutral Solutes by LLC-PK1 Cells.- 5 Sugar Transport in the Renal Epithelial Cell Culture.- 1. Introduction.- 1.1. Inherent Advantages.- 1.2. Inherent Disadvantages.- 2. Avenues of Approach.- 2.1. Primary Cultures.- 2.2. Established Cell Lines.- 3. Sugar Transport in the LLC-PK1 Cell Line.- 3.1. General Characteristics of LLC-PK1 Cells.- 3.2. Na+-Dependent, Luminal Sugar Transport.- 3.3. Na+-Independent, Antiluminal Sugar Transport.- 3.4. The Development of Na+-Dependent Sugar Transport in LLC-PK1 Cells-Expression of Polarity in Cultured Epithelia.- References.- 6 Neutral Amino Acid Transport in Cultured Kidney Tubule Cells.- 1. The LLC-PK1 Cell Line.- 2. Amino Acid Transport Systems in Mammalian Cells.- 3. Amino Acid Transport by Epithelia.- 4. Amino Acid Transport Systems in LLC-PK1 Cells.- 5. Presence in LLC-PK1 Cells of an Enzyme Postulated to Mediate Amino Acid Transport.- 6. Site of Transport of Amino Acids in LLC-PK1 Cells.- 7. Conclusions.- References.- 7 Transepithelial Transport in Cell Culture: Mechanism and Bioenergetics of Na+, d-Glucose Cotransport.- 1. Introduction.- 1.1. Expression of Transporting Epithelial Phenotype in Cell Culture.- 1.2. Advantages of Cell Culture for the Study of Transepithelial Transport.- 2. Transepithelial Na+, d-Glucose Cotransport by the Renal Cell Line LLC-PK1.- 2.1. Analysis of Cotransport by ISC (Short-Circuit Current).- 2.2. Analysis of Cotransport by Isotope Fluxes.- 3. Mechanism of Coupled Na+, d-Glucose Apical Membrane Uptake.- 3.1. Apical Uptake Na+:d-Glucose Is 2:1.- 3.2. Isc as a Function of [Na+ ] Is 2:1, as a Function of [d-glucose] Is 1:1.- 3.3. Phlorizin Binding as a Function of [Na+ ] Is 1:1.- 3.4. Two-Step, Two-Sodium Model of Na+, d-Glucose Cotransport.- 4. Role of Na+/K+ ATPase in Net Transepithelial Na+ Transport.- 5. Bioenergetics of Na+, d-Glucose Cotransport by Cultured Cells.- 5.1. The Relation between Glycolysis and Isc.- 5.2. O2 and Isc Vary according to Glycolysis.- 6. Conclusion.- References.- Section IV Membrane Proteins and Hormone Receptors.- 8 Viruses in the Study of the Polarity of Epithelial Membranes.- 1. Introduction.- 2. Initial Studies concerning Viruses and MDCK Cells.- 3. Possible Role of Viral Envelope Proteins in Determining the Membrane Domain for Viral Budding.- 4. The Transport Pathways for Viral Glycoproteins from the RER to the Plasma Membrane: Their Role in the Biogenesis of Polarity.- 5. Endocytosis of Viral Glycoproteins: Its Role in the Maintenance of Membrane Polarity.- 6. The Role of Tight Junctions.- 7. Summary.- References.- 9 Hormone Receptors and Response in Cultured Renal Epithelial Cell Lines.- 1. Introduction.- 2. A6 Cells.- 2.1. Background.- 2.2. Aldosterone.- 2.3. Insulin.- 2.4. Vasopressin.- 2.5. Other Hormones.- 3. LLC-PK1 Cells.- 3.1. Background.- 3.2. Vitamin D3.- 3.3. Vasopressin.- 3.4. Calcitonin.- 3.5. Catecholamines.- 3.6. Other Hormones.- 4. MDCK Cells.- 4.1. Background.- 4.2. Aldosterone and Deoxycorticosterone.- 4.3. Bradykinin.- 4.4. Catecholamines.- 4.5. Glucagon.- 4.6. Prostaglandins.- 4.7. Vasopressin.- 4.8. Other Hormones.- 5. Additional Cell Lines.- 6. Conclusions and Perspective.- References.- 10 Monoclonal Antibodies to Integral Membrane Transport and Receptor Proteins: Novel Reagents for Protein Purification.- 1. Introduction.- 2. Monoclonal Antibody Production.- 2.1. Monoclonal Antibodies to Transport Proteins.- 2.2. Monoclonal Antibodies to the Slow Inward Ca2+ Channel.- 2.3. Monoclonal Antibodies to Neurotransmitter Receptors.- 3. Immunoaffinity Chromatography Purification of Membrane Proteins with Monoclonal Antibodies.- 3.1. Immunoaffinity Purification of ?-Adrenergic Receptors.- 3.2. Immunoaffinity Purification of the Na+/d-Glucose Cotransporter.- 4. Conclusion and Future Approaches.- References.- Section V Epithelial Cell Cultures and Hormonally Defined Medium.- 11 Estrogen-Dependent Kidney Tumors.- 1. Introduction.- 2. Primary Hormone-Dependent Tumors.- 2.1. Hyperplasia of Bowman's Capsule.- 2.2. Induction of Estrogen-Dependent Tumors of the Hamster.- 2.3. Role of Hormones in Hamster Kidney Tumor.- 2.4. Sex Differences in the Hamster Kidney Tumor.- 2.5. Hormone Dependence of Tumor Growth.- 2.6. Hamster Kidney Tumor Transplants.- 2.7. Metastasis of Hamster Renal Carcinoma.- 2.8. Mechanistic Studies of Estrogen-Induced Carcinogenesis.- 3. Hormone-Dependent Kidney Tumor Cell Lines.- 3.1. Development of H-301 Tumor Cell Line.- 3.2. Morphology and Histology of H-301 Cells.- 3.3. Estrogen Dependence of H-301 Cell Growth.- 3.4. Mechanistic Studies of Estrogen Dependence of H-301 Growth.- 4. Hormone Receptor Status of the Hamster Kidney Tumor.- 4.1. Estrogen Receptor Status in Hamster Kidney.- 4.2. Estrogen Receptor Status in Primary Renal Carcinoma.- 4.3. Receptor Binding of Other Hormones.- 4.4. Hormone Receptors in Transplants.- 4.5. Estrogen Receptor Status of H-301 Cells.- 5. Conclusion.- References.- 12 Hormonally Defined, Serum-Free Media for Epithelial Cells in Culture.- 1. Introduction.- 2. Epithelial Cells of the Endocrine System.- 3. Epithelia of Other Organs.- 4. Cells of Neuroepithelial Origin.- 5. Conclusion-The Advantages of Serum-Free Cell Culture.- References.- 13 Importance of Hormonally Defined, Serum-Free Medium for In Vitro Studies Concerning Epithelial Transport.- 1. Introduction.- 2. Transepithelial Solute Transport by Cultured Epithelial Cells.- 3.
: Importance of Hormonally Defined, Serum-Free Medium in the Study of Hormonal Regulation of Epithelial Transport.- 4. Importance of Hormonally Defined Medium in the Study of Epithelial Transport In Vitro.- 5. Use of the MDCK Cell Line in the Study of Hormonal Regulation of Transport.- 6. Use of Hormonally Defined, Serum-Free Medium in the Study of Transport in Other Established Epithelial Cell Lines.- 7. Importance of Hormonally Defined, Serum-Free Medium in the Study of Primary Epithelial Cell Cultures.- 8. Summary.- References.
LC Classification : ‭QM561‬‭.T383 2012‬
Added Entry : Taub, Mary
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟