|
" 3D Dynamic Scene Analysis : "
by Zhengyou Zhang, Olivier Faugeras.
Document Type
|
:
|
BL
|
Record Number
|
:
|
750997
|
Doc. No
|
:
|
b570956
|
Main Entry
|
:
|
by Zhengyou Zhang, Olivier Faugeras.
|
Title & Author
|
:
|
3D Dynamic Scene Analysis : : a Stereo Based Approach\ by Zhengyou Zhang, Olivier Faugeras.
|
Publication Statement
|
:
|
Berlin, Heidelberg : Springer Berlin Heidelberg, 1992
|
Series Statement
|
:
|
Springer series in information sciences, 27.
|
Page. NO
|
:
|
(xi, 300 pages)
|
ISBN
|
:
|
364258148X
|
|
:
|
: 9783642581489
|
Contents
|
:
|
1. Introduction --; 1.1 Brief Overview of Motion Analysis --; 1.2 Statement of the 'Motion from Stereo' Problem --; 1.3 Organization of The Book --; 2. Uncertainty Manipulation and Parameter Estimation --; 2.1 Probability Theory and Geometric Probability --; 2.2 Parameter Estimation --; 2.3 Summary --; 2.4 Appendix: Least-Squares Techniques --; 3. Reconstruction of 3D Line Segments --; 3.1 Why 3D Line Segments --; 3.2 Stereo Calibration --; 3.3 Algorithm of the Trinocular Stereovision --; 3.4 Reconstruction of 3D Segments --; 3.5 Summary --; 4. Representations of Geometric Objects --; 4.1 Rigid Motion --; 4.2 3D Line Segments --; 4.3 Summary --; 4.4 Appendix: Visualizing Uncertainty --; 5. A Comparative Study of 3D Motion Estimation --; 5.1 Problem Statement --; 5.2 Extended Kalman Filter Approaches --; 5.3 Minimization Techniques --; 5.4 Analytical Solution --; 5.5 Kim and Aggarwal's method --; 5.6 Experimental Results --; 5.7 Summary --; 5.8 Appendix: Motion putation Using the New Line Segment Representation --; 6. Matching and Rigidity Constraints --; 6.1 Matching as a Search --; 6.2 Rigidity Constraint --; 6.3 Completeness of the Rigidity Constraints --; 6.4 Error Measurements inn the Constraints --; 6.5 Other Formalisms Rigidity Constraints --; 6.6 Summary --; 7. Hypothesize-and-Verify Method for Two 3D View Motion Analysis --; 7.1 General Presentation --; 7.2 Generating Hypotheses --; 7.3 Verifying Hypothesis --; 7.4 Matching Noisy Segments --; 7.5 Experimental Results --; 7.6 Summary --; 7.7 Appendix: Transforming a 3D Line Segment --; 8. Further Considerations on Reducing Complexity --; 8.1 Sorting Data Features --; 8.2 'Good-Enough' Method --; 8.3 Speeding Up the Hypothesis Generation Process Through Grouping --; 8.4 Finding Clusters Based on Proximity --; 8.5 Finding Planes --; 8.6 Experimental Results --; 8.6.1 Grouping Results --; 8.6.2 Motion Results --; 8.7 Conclusion --; 9. Multiple Object Motions --; 9.1 Multiple Object Motions --; 9.2 Influence of Egomotion on Observed Object Motion --; 9.3 Experimental Results --; 9.4 Summary --; 10. Object Recognition and Localization --; 10.1 Model-Based Object Recognition --; 10.2 Adapting the Motion-Determination Algorithm --; 10.3 Experimental Result --; 10.4 Summary --; 11. Calibrating a Mobile Robot and Visual Navigation --; 11.1 The INRIA Mobile Robot --; 11.2 Calibration Problem --; 11.3 Navigation Problem --; 11.4 Experimental Results --; 11.5 Integrating Motion Information from Odometry --; 11.6 Summary --; 12. Fusing Multiple 3D Frames --; 12.1 System Description --; 12.2 Fusing Segments from Multiple Views --; 12.3 Experimental Results --; 12.4 Summary --; 13. Solving the Motion Tracking Problem: A Framework --; 13.1 Previous Work --; 13.2 Position of the Problem and Primary Ideas --; 13.3 Solving the Motion Tracking Problem: A Framework --; 13.4 Splitting or Merging --; 13.5 Handling Abrupt Changes of Motion --; 13.6 Discussion --; 13.7 Summary --; 14. Modeling and Estimating Motion Kinematics --; 14.1 The Classical Kinematic Model --; 14.2 Closed-Form Solutions for Some Special Motions --; 14.2.1 Motion with Constant Angular and Translational Velocities --; 14.2.2 Motion with Constant Angular Velocity and Constant Translational Acceleration --; 14.2.3 Motion with Constant Angular Velocity and General Translational Velocity --; 14.2.4 Discussions --; 14.3 Relation with Two-View Motion Analysis --; 14.4 Formulation for the EKF Approach --; 14.5 Linearized Kinematic Model --; 14.6 Summary --; 15. Implementation Details and Experimental Results --; 15.1 Matching Segments --; 15.2 Support of Existence --; 15.3 Algorithm of the Token Tracking Process --; 15.4 Grouping Tokens into Objects --; 15.5 Experimental Results --; 15.5.1 Synthetic Data --; 15.6 Summary --; 16. Conclusions and Perspectives --; 16.1 Summary --; 16.2 Perspectives --; Appendix: Vector Manipulation and Differentiation --; A.1 Manipulation of Vectors --; A.2 Differentiation of Vectors --; References.
|
Abstract
|
:
|
This is the first book to treat the analysis of 3D dynamic scenes using a stereovision system. Several approaches are described, for example two different methods for dealing with long and short sequences of images of an unknown environment including an arbitrary number of rigid mobile objects. Results obtained from stereovision systems are found to be superior to those from monocular image systems, which are often very sensitive to noise and therefore of little use in practice. It is shown thatmotion estimation can be further improved by the explicit modeling of uncertainty in geometric objects. The techniques developed in this book have been successfully demonstrated with a large number of real images in the context of visual navigation of a mobile robot.
|
Subject
|
:
|
Artificial intelligence.
|
Subject
|
:
|
Computer science.
|
Subject
|
:
|
Computer vision.
|
LC Classification
|
:
|
TA1632.B994 1992
|
Added Entry
|
:
|
Olivier Faugeras
|
|
:
|
Zhengyou Zhang
|
| |