رکورد قبلیرکورد بعدی

" Applications of Synchrotron Radiation. "


Document Type : BL
Record Number : 753943
Doc. No : b573904
Main Entry : Catlow, Richard.
Title & Author : Applications of Synchrotron Radiation.\ Catlow, Richard.
Publication Statement : Springer Verlag, 2013
ISBN : 3642790240
: : 9783642790249
Contents : 1 Synchrotron radiation instrumentation.- 1.1 Introduction.- 1.2 Synchrotron radiation sources.- 1.2.1 Collimation, intensity and polarisation.- 1.2.2 Brilliance and time structure.- 1.2.3 Insertion devices.- 1.3 Mirror optics.- 1.3.1 Total external reflection.- 1.3.2 Toroids and cylinders.- 1.3.3 Filters and windows.- 1.3.4 Multilayers.- 1.4 Monochromators.- 1.4.1 Crystal monochromators.- 1.4.2 Grating monochromators.- 1.5 Detectors.- 1.5.1 Low energy resolution detectors.- 1.5.2 Detectors with high energy resolution.- 1.5.3 Photoelectron analysers.- 1.5.4 Multidetectors.- 1.6 Experimental layouts.- 1.6.1 X-ray absorption spectroscopy.- 1.6.2 X-ray diffraction.- 1.6.3 UV photoemission.- References.- 2 X-ray diffraction from powders and crystallites.- 2.1 Introduction.- 2.2 X-ray diffraction: basic features.- 2.3 Synchrotron radiation and powder diffraction.- 2.4 Instrumentation.- 2.4.1 Angle dispersive scans.- 2.4.2 Energy dispersive studies.- 2.5 Applications.- 2.5.1 High resolution powder diffraction.- 2.5.2 Time-resolved (or kinetic) crystallography.- 2.5.3 High pressure studies.- 2.5.4 Anomalous dispersion studies.- 2.5.5 Studies of surface films.- 2.6 Single crystal studies.- 2.6.1 Microcrystalline diffraction.- 2.6.2 Laue methodologies.- 2.7 Summary and conclusion.- References.- 3 X-ray topography.- 3.1 Introduction.- 3.2 Dispersion and absorption according to the dynamical theory of X-ray diffraction: an overview.- 3.3 Topographic techniques and contrast formation mechanisms.- 3.3.1 Integrated intensity techniques.- 3.3.2 Pseudo plane wave techniques.- 3.4 Crystal growth defects.- 3.5 Dislocation analysis: integrated intensity techniques.- 3.6 Dislocation analysis and strain mapping: plane wave imaging.- 3.7 From the analysis of one-dimensional strains to the precise location of impurity atoms.- 3.8 Applications of X-ray topography to the study of solid state reactions.- 3.9 Conclusion.- References.- 4 Small angle X-ray scattering and the study of microemulsions.- 4.1 Introduction.- 4.2 SAXS hardware requirements.- 4.2.1 Monochromator.- 4.2.2 Collimation.- 4.3 Experiments on AOT microemulsions.- 4.3.1 High angle limit.- 4.3.2 Scattering from practical systems.- References.- 5 Time-resolved small angle X-ray scattering on polymers.- 5.1 Introduction.- 5.2 SAXS and polymers.- 5.3 Time-resolved SAXS in polymer crystallisation and annealing.- 5.4 Model polymers: ultra-long n.- 5.5 Phase separation in liquid polymer mixtures.- 5.6 Simultaneous diffraction and calorimetry experiments.- References.- 6 EXAFS and structural studies of glasses.- 6.1 Introduction.- 6.2 Basic principles of EXAFS.- 6.2.1 The EXAFS function.- 6.2.2 Structural information in EXAFS.- 6.3 EXAFS data analysis.- 6.3.1 Real space analysis.- 6.3.2 k-space analysis.- 6.4 The structure of oxide glasses.- 6.4.1 Network modifiers in silicate glasses.- 6.4.2 Intermediates in silicate glasses.- 6.4.3 Alkali germanate glasses.- 6.4.4 Corrosion studies of silicate glasses.- References.- 7 EXAFS studies of ionically conducting solids.- 7.1 Introduction.- 7.2 Ionic conductivity in solids.- 7.3 Silver iodide.- 7.4 Rare-earth doped alkaline earth fluorides.- 7.5 Cubic stabilised zirconia and bismuth oxide.- 7.5.1 Cubic stabilised ZrO2.- 7.5.2 Rare-earth doped bismuth oxide.- 7.6 Mixed fluorides.- 7.7 Polymer electrolytes.- 7.8 Summary.- References.- 8 Applications of EXAFS to the study of metal catalysts.- 8.1 Introduction.- 8.2 Sampling methods.- 8.3 Homogeneous transition metal catalysts.- 8.4 Surface organometallic species.- 8.5 Oxide supported metal ion sites.- 8.6 Oxide supported metallic catalysts.- 8.7 Oxide supported alloy catalysts.- 8.8 Concluding comments.- References.- 9 Looking at solid surfaces with synchrotron radiation.- 9.1 Introduction.- 9.2 Surface science: the tools.- 9.3 Advantages of the synchrotron source.- 9.4 Photoemission.- 9.4.1 Valence level photoemission.- 9.4.2 Angle resolved photoemission.- 9.4.3 Core level photoemission.- 9.5 X-ray absorption spectroscopy.- 9.5.1 Surface EXAFS.- 9.5.2 X-ray standing waves.- 9.5.3 NEXAFS.- 9.6 X-ray diffraction from surfaces.- References.- 10 Protein crystallography.- 10.1 Introduction.- 10.2 Instrumentation for protein crystallography.- 10.2.1 X-ray optics.- 10.2.2 Detectors.- 10.3 Use of the high intensity and collimation of synchrotron radiation in protein crystallography.- 10.3.1 Fundamentals of the protein crystallographic technique.- 10.3.2 Reduction of radiation damage.- 10.3.3 Large unit cells: virus crystallography.- 10.3.4 Small sample volume.- 10.4 Anomalous scattering and phase determination.- 10.4.1 Multiple wavelength anomalous diffraction methods.- 10.5 Time-resolved crystallography.- 10.5.1 Laue crystallography.- 10.5.2 Time-resolved studies of the phosphorylase enzyme.- 10.5.3 Structural transitions in insulin.- 10.5.4 100 ps data collection.- 10.6 Synchrotron radiation and diffuse scattering from protein crystals.- 10.7 Conclusions and future directions.- References.- 11 X-ray absorption spectroscopy of biological molecules.- 11.1 Introduction.- 11.2 Experimental aspects.- 11.3 Information content of an X-ray absorption spectrum.- 11.3.1 The position of an absorption edge.- 11.3.2 Pre-edge and/or edge features.- 11.3.3 XANES and EXAFS.- 11.4 Applications.- 11.4.1 Metallothioneins.- 11.4.2 Zinc centres in proteins.- 11.4.3 Manganese in photosystem II.- 11.4.4 Oxomolybdoenzymes.- 11.4.5 Molybdenum nitrogenases.- 11.4.6 Vanadoenzymes.- 11.5 XAS and protein crystallography.- References.- 12 X-ray microscopy.- 12.1 Introduction.- 12.2 X-ray optical systems.- 12.3 Methods of zone plate fabrication.- 12.4 X-ray microscope designs.- 12.4.1 Source brilliance.- 12.4.2 Monochromators.- 12.4.3 Scanning versus fixed beam arrangements.- 12.5 Applications of X-ray focussing microscopes.- 12.5.1 X-ray contrast.- 12.5.2 Time-dependent imaging.- 12.6 Contact X-ray microscopy.- 12.6.1 Geometrical considerations.- 12.6.2 Photoresist.- 12.6.3 Applications.- 12.7 Future developments.- 12.7.1 Sources and optics.- 12.7.2 Phase contrast and holographic microscopy.- 12.8 Conclusion.- References.- 13 Synchrotron radiation trace element analysis.- 13.1 Introduction.- 13.2 The development of accelerator-based techniques.- 13.3 The use of synchrotron radiation.- 13.3.1 The sensitivity of SXRF.- 13.3.2 The detection limits of SXRF.- 13.3.3 Radiation damage.- 13.3.4 Concentration assignment using SXRF.- 13.4 Applications of synchrotron X-ray fluorescence.- 13.5 Total reflection.- 13.6 Spatial resolved SXRF.- 13.6.1 The focussing of X-rays.- 13.6.2 Experimental work with synchrotron microprobes.- 13.7 Conclusions.- References.- 14 Atomic and molecular science.- 14.1 Introduction.- 14.2 Photo-electron spectroscopy.- 14.3 Photo-ion spectroscopy.- 14.4 Fluorescence spectroscopy.- 14.5 Conclusion.- References.- 15 Time-resolved spectroscopy.- 15.1 Introduction.- 15.2 Principles of fluorescence polarisation.- 15.2.1 General expressions.- 15.2.2 Membrane systems.- 15.2.3 Excitation with horizontally polarised light.- 15.2.4 Determination of F(t).- 15.3 Experimental methods and instrumentation.- 15.3.1 The single photon counting method.- 15.3.2 Experimental set-up and methods.- 15.4 Numerical analysis.- 15.5 Results.- 15.5.1 The initial anisotropy r(0).- 15.5.2 The orientational order.- 15.5.3 Reorientational dynamics.- 15.6 The future.- References.
Added Entry : Catlow, Richard.
: Greaves, G.N.
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟