Document Type
|
:
|
BL
|
Record Number
|
:
|
754687
|
Doc. No
|
:
|
b574649
|
Main Entry
|
:
|
Inaki Preciado Idoeta
|
Title & Author
|
:
|
Radar target imaging.\ Inaki Preciado Idoeta
|
Publication Statement
|
:
|
[Place of publication not identified] : Springer, 2012
|
Page. NO
|
:
|
pages
|
ISBN
|
:
|
3642851142
|
|
:
|
: 9783642851148
|
Contents
|
:
|
1 Introduction.- References.- 2 Radar Polarimetry: Applications to Radar Systems.- 2.1 Polarization Behavior of Different Radar Objects.- 2.2 Some Implementation Aspects.- 2.2.1 Dual-Polarization Radar Configurations.- 2.2.2 Polarization Adaptation.- 2.2.3 Radar System Requirements.- 2.3 Optimum Radar Receivers for Target Detection in the Clear.- 2.3.1 Some Optimum Receiver Structures.- 2.3.2 Some Remarks on Performance Evaluation.- 2.4 Evaluation of Polarimetric Doppler Resolution Through Cramer-Rao Bounds.- 2.4.1 Signal Modeling.- 2.4.2 Cramer-Rao Bound and Maximum Likelihood Estimation.- 2.5 Adaptive Polarization Cancellation of Partially Polarized Disturbance.- 2.5.1 Improving Signal/Disturbance Ratio Through Polarization Adaptation.- 2.5.2 Polarization Adaptation for Disturbance Cancellation.- 2.5.3 Results on Adaptive Polarization Cancellation of Partially Polarized Disturbance.- 2.6 Conclusions and Perspectives.- References.- 3 Fine Resolution of Radar Targets.- 3.1 Connection Between Creeping Waves and the Singularity Expansion Method.- 3.1.1 Watson Transformation.- 3.1.2 Singularity Expansion Method: Conducting Targets.- 3.1.3 Dielectric Targets.- 3.2 Surface Wave Resonances on Smooth Targets of General Shape.- 3.2.1 Finite Circular-Cylindrical Cavity.- 3.2.2 Resonances of Conducting Finite Cylinders and Prolate Spheroids.- 3.2.3 Phase Matching of Surface Waves on Conducting Spheroids.- 3.3 Application to Inverse Scattering.- 3.3.1 Radar Spectroscopy.- 3.3.2 The Inverse Scattering Problem for a Coated Conducting Sphere.- 3.3.3 Transient Observation of Resonance Frequencies..- 3.4 Conclusions.- References.- 4 A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering Within the Kirchhoff or Born Approximation.- 4.1 Integral Representations for Electromagnetic Scattering by Perfectly Conducting and Dielectric Scatterers.- 4.2 Linearization in Terms of the Born or Kirchhoff Approximation for Plane Wave Incidence.- 4.3 Dyadic Backpropagation in Terms of the Generalized Vector Holographic Fields.- 4.4 Solution of the Linearized Electric Vector Porter-Bojarski Equation in the Frequency Diversity Mode.- 4.4.1 Dielectric Scatterer Within the Born Approximation.- 4.4.2 Perfectly Conducting Scatterer Within the Kirchhoff Approximation.- 4.5 Numerical Simulations.- 4.6 Conclusions.- 4.A Some Properties of Singular Functions.- 4.B Computation of the Generalized Vector Holographic Field in Terms of the Scattering Amplitude.- References.- 5 The Measurement of Radar Cross Section.- 5.1 Measurement Theory.- 5.1.1 Calibration of Measurements.- 5.2 The OSU Measurement Range.- 5.2.1 Compact Range Architecture.- 5.2.2 Reflector Types and Trade Offs.- 5.2.3 The Feed.- 5.2.4 Test Target Support.- 5.2.5 Instrumentation.- 5.2.6 Range Sensitivity.- 5.3 Performance Analysis.- 5.3.1 Direction of Arrival.- 5.3.2 Near Field Imaging.- 5.3.3 Conclusions.- 5.4 Analysis of RCS Measurements.- 5.4.1 Frequency Domain Techniques.- 5.4.2 Aspect Angle Domain Processing.- References.
|
Subject
|
:
|
Electromagnetic waves -- Polarisation.
|
Subject
|
:
|
Electromagnetic waves -- Scattering.
|
Subject
|
:
|
Radar cross sections.
|
LC Classification
|
:
|
TK6580.I535 2012
|
Added Entry
|
:
|
Inaki Preciado Idoeta
|