|
" Nuclear fission reactors : "
Gnther Kessler
Document Type
|
:
|
BL
|
Record Number
|
:
|
767386
|
Doc. No
|
:
|
b587370
|
Main Entry
|
:
|
Gnther Kessler
|
Title & Author
|
:
|
Nuclear fission reactors : : potential role and risks of converters and breeders.\ Gnther Kessler
|
Publication Statement
|
:
|
[Place of publication not identified] : Springer, 2013
|
ISBN
|
:
|
3709176220
|
|
:
|
: 9783709176221
|
Contents
|
:
|
1 Introduction.- 1.1 TheDevelopmentofNuclear Energy in the World.- 1.2 Technical Applications of Nuclear Fission Energy.- 1.2.1 Nuclear Power for Electricity and Process Heat Generation.- 1.2.2 Nuclear Ship Propulsion.- 1.2.3 Nuclear High Temperature Process Heat.- 1.2.4 Nuclear Power for Hydrogen Generation.- 1.3 Economic Aspects of Nuclear Energy.- 1.3.1 Electricity Generating Costs.- 1.3.2 Load Factors of Nuclear Power Plants.- Selected Literature.- 2 Some Basic Physics of Converter and Breeder Reactors.- 2.1 Basic Nuclear Physics.- 2.1.1 Elastic Scattering.- 2.1.2 Inelastic Scattering.- 2.1.3 Neutron Capture.- 2.1.4 Nuclear Fission.- 2.1.5 Energy Release in Nuclear Fission.- 2.1.6 Decay Constant and Halflife.- 2.1.7 Prompt and Delayed Neutrons.- 2.1.8 Afterheat of the Reactor Core.- 2.2 Neutron Flux and Reaction Rates.- 2.3 Spatial Distribution of the Neutron Flux in the Reactor Core.- 2.4 Fuel Burnup, Fission Product and Actinide Buildup.- 2.5 Conversion Ratio and Breeding Ratio.- 2.6 Conversion Ratio and Fuel Utilization.- 2.7 Radioactive Inventories in Fission Reactors.- 2.8 Inherent Safety Characteristics of Converter and Breeder Reactor Cores.- 2.8.1 Reactivity and Non-steady State Conditions.- 2.8.2 Temperature Reactivity Coefficients.- 2.8.2.1 Fuel Doppler Temperature Coefficient.- 2.8.2.2 Coefficients of Moderator or Coolant Temperatures.- 2.8.2.3 Structural Material Temperature Coefficient.- 2.8.3 Reactor Control and Safety Analysis.- 2.8.3.1 Reactivity Changes During Startup and Full Power Operation.- 2.8.3.2 Qualitative Description of a Reactor Core under Transient Power Conditions.- Selected Literature.- 3 Nuclear Fuel Supply.- 3.1 Introduction (The Nuclear Fuel Cycle).- 3.2 Uranium Resources and Requirements.- 3.2.1Uranium Consumption in Various Reactor Systems.- 3.2.2 Available Uranium and Thorium Reserves.- 3.2.2.1 Worldwide Available Uranium Reserves.- 3.2.2.2 Uranium Production.- 3.2.2.3 Thorium Reserves.- 3.2.3 Uranium Requirement vs.
|
|
:
|
Uranium Reserves.- 3.3 Concentration, Purification and Conversion of Uranium.- 3.4 Uranium Enrichment.- 3.4.1 Introduction.- 3.4.2 Designs of Enrichment Plants.- 3.4.3 Uranium Enrichment by Gaseous Diffusion.- 3.4.4 Gas Ultracentrifuge Process.- 3.4.5 Aerodynamic Methods.- 3.4.6 Advanced Separation Processes.- 3.4.7Effects of Tails Assay and Economic Optimum.- 3.5 Fuel Fabrication.- Selected Literature.- 4 Converter Reactors with a Thermal Neutron Spectrum.- 4.1 Light Water Reactors.- 4.1.1 Pressurized Water Reactors.- 4.1.1.1 Core.- 4.1.1.2 Coolant System.- 4.1.1.3 Containment.- 4.1.1.4 Control Systems.- 4.1.1.5 Protection System.- 4.1.1.5.1 Reactor Scram.- 4.1.1.5.2 Emergency Power Supply.- 4.1.1.5.3 Emergency Feedwater System.- 4.1.1.5.4 Emergency Cooling and Afterheat Removal Systems.- 4.1.1.5.5 Closure of the Reactor Containment.- 4.1.2 Boiling Water Reactors.- 4.1.2.1 Core, Pressure Vessel and Cooling System.- 4.1.2.2 Safety Systems.- 4.1.2.3 Emergency Cooling and Afterheat Removal Systems.- 4.2 Gas Cooled Thermal Reactors.- 4.2.1 Advanced Gas Cooled Reactors.- 4.2.2 High Temperature Gas Cooled Reactors.- 4.2.2.1 HTGR with Prismatic Fuel Elements.- 4.2.2.2 HTR with Spherical Fuel Elements.- 4.2.2.3 General Safety Considerations of HTGR's and HTR's.- 4.2.2.3.1 Control and Shutdown Systems.- 4.2.2.3.2 Afterheat Removal and Emergency Cooling.- 4.2.2.3.3 Design Base Accidents.- 4.3 Heavy Water Reactors.- 4.3.1 CANDU Pressurized Heavy Water Reactor.- 4.3.1.1 Fuel Elements.- 4.3.1.2 Reactivity Control.- 4.3.1.3 Shutdown Cooling Systems.- 4.3.1.4 Safety Systems.- 4.4 Near Breeder and Thermal Breeder Reactors.- 4.4.1 Homogeneous Core Thermal Breeders.- 4.4.2 Light Water Breeder Reactors (LWBR's).- Selected Literature.- 5 Breeder Reactors with a Fast Neutron Spectrum.- 5.1 The Potential Role of Breeder Reactors with a Fast Neutron Spectrum.- 5.2 Brief History of the Development of Fast Breeder Reactors.- 5.3 The Physics of LMFBR Cores.- 5.3.1 LMFBR Core Design.- 5.3.2 Energy Spectrum and Neutron Flux Distribution.- 5.3.3 Breeding Ratio.- 5.3.4 Reactivity Coefficients and Control Stability.- 5.3.5 The Doppler Coefficient.- 5.3.6 The Coolant Temperature Coefficient.- 5.3.7 Fuel and Structural Temperature Coefficients.- 5.3.8 Delayed Neutron Characteristics and Prompt Neutron Lifetime.- 5.4 Technical Aspects of Sodium Cooled FBR's.- 5.5 SUPERPHENIX -A Commercial Size Demonstration LMFBR.- 5.5.1 Reactor Core and Blankets.- 5.5.2 Reactor Tank and Primary Coolant Circuits.- 5.5.3 Secondary Coolant Circuits and Steam Generators.- 5.6 Safety Design Aspects of LMFBR Plants.- 5.6.1 The Multiple Barrier Principle.- 5.6.2 Control and Shutdown Systems.- 5.6.3 Afterheat Removal and Emergency Cooling of LMFBR Cores.- 5.6.4 Core Instrumentation and Protection against Fault Propagation.- 5.6.5 Design Bases of the Primary System and Containment.- 5.6.6 Sodium Fires.- 5.6.7 Sodium-Water Interactions in Steam Generators 1295.7 Heterogeneous Core Designs of LMFBR's.- 5.8 LMFBR Cores with Advanced Oxide and Carbide Fuels.- 5.9 Gas Cooled Fast Breeder Reactors.- Selected Literature.- 6 Nuclear Fuel Cycle Options.- 6.1 Fuel Cycle Options for Converter Reactors.- 6.1.1 The Once-Through Fuel Cycle.- 6.1.2 Closed Nuclear Fuel Cycles.- 6.1.2.1 Plutonium Recycling.- 6.1.2.2 The Thorium/Uranium-233 Fuel Cycle.- 6.1.2.3 Comparison of Various Converter Reactors.- 6.2 Fuel Cycle Options for Breeder Reactors.- 6.2.1 The Uranium/Plutonium Fuel Cycle.- 6.2.2 The Thorium/Uranium-233 Fuel Cycle.- 6.3 Natural Uranium Consumption in Various Reactor Scenarios.- Selected Literature.- 7 Technical Aspects of Nuclear Fuel Cycles.- 7.1 Discharge and Storage of Spent Fuel Elements.- 7.1.1 Shipping Spent Fuel Elements.- 7.1.2 Interim Storage of Spent Fuel Elements.- 7.2 The Uranium-238/Plutonium Fuel Cycle.- 7.2.1 Reprocessing Spent UO2 Fuel Elements.- 7.2.1.1 LWR Fuel Element Disassembly and Spent Fuel Dissolution.- 7.2.1.2 Gas Cleaning and Retention of Gaseous Fission Products.- 7.2.1.3 Chemical Separation of Uranium and Plutonium.- 7.2.1.4 Mass Flows of Radioactive Material in a Model LWR Fuel Reprocessing Plant.- 7.2.1.5 Radioactive Inventories of Spent Fuel and Waste.- 7.2.2 Recycling Plutonium and Uranium.- 7.2.2.1 Converting Plutonium Nitrate into Plutonium Oxide.- 7.2.2.2 Converting Uranyl Nitrate into Uranium Oxide.- 7.2.2.3 Mixed Oxide Fuel Fabrication.- 7.2.3 Status of Uranium Fuel Reprocessing Technology.- 7.2.4 Status of Experience in Mixed Oxide Fuel Fabrication and Reprocessing.- 7.2.5 Safety Aspects.- 7.2.5.1 Safety Design Measures in Reprocessing Plants.- 7.2.5.2 Safety Considerations for Mixed Oxide Fuel Fabrication Plants.- 7.3 The Thorium/Uranium-233 Fuel Cycle.- 7.3.1 Fuel Element Disassembly.- 7.3.2 THOREX Process.- 7.3.3 Uranium-233/Thorium Fuel Fabrication.- 7.4 The Uranium/Plutonium Fuel Cycle of Fast Breeder Reactors.- 7.4.1 Ex-core Time Periods of LMFBR Spent Fuel.- 7.4.2 Mass Flow in a Model LMFBR Fuel Cycle.- 7.4.3 Radioactive Inventories of Spent LMFBR Fuel.- 7.4.4 LMFBR Fuel Reprocessing.- 7.4.5 LMFBR Fuel Fabrication.- 7.4.6 Status of LMFBR Fuel Reprocessing and Refabrication.- 7.5 Waste Conditioning.- 7.5.1 Conditioning Waste from Spent LWR Fuel Reprocessing.- 7.5.1.1 Solidification and Storage of Liquid High Level Waste.- 7.5.1.2 Solidification and Storage of Solid High Level Waste.- 7.5.1.3 Treatment of Medium Level Waste.- 7.5.1.4 Treatment of Remaining Wastes.- 7.5.1.5 Waste Volumes to Be Stored from Reprocessing of Spent LWR Fuel.- 7.5.2 Radioactive Waste from Uranium-233/Thorium Fuel Reprocessing.- 7.5.3 Radioactive Waste from Reprocessing Plutonium/Uranium Fuel of LMFBR's.- 7.5.4 Waste Arising in Other Parts of the Fuel Cycle.- 7.5.4.1 Uranium Ore Processing.- 7.5.4.2 Uranium Refining, Conversion and Enrichment.- 7.5.4.3 Fuel Element Fabrication and Nuclear Power Plants.- 7.6 Nuclear Waste Repositories.- 7.6.1 Waste Disposal in Deep Geological Formations.- 7.6.2 Direct Disposal of Spent Fuel Elements.- 7.6.3 Health and Safety Impacts of Radioactive Waste Disposal.- Selected Literature.- 8 Environmental Impacts and Risks of Nuclear Fission Energy.- 8.1 Radioactivity Releases from Nuclear Power Plants and Fuel Cycle Facilities During Normal Operation.- 8.1.1 Radioactivity Releases and Exposure Pathways.- 8.1.1.1 Exposure Pathways of Significant Radionuclides.- 8.1.1.1.1 Tritium, Carbon-14 and Krypton.- 8.1.1.1.2 Radioisotopes of Iodine.- 8.1.1.1.3 Strontium and Cesium.- 8.1.1.1.4 Plutonium Isotopes.- 8.1.1.1.5 Other Radiobiologically Significant Isotopes.- 8.1.1.2 Radiation Dose.- 8.1.1.3 Permissible Radiation Exposures.- 8.1.2 Radionuclide Effluents and Radiation Exposures from Various Parts of the Fuel Cycle.- 8.1.2.1 Uranium Mining and Milling.- 8.1.2.1.1 Radioactive Effluents from Mining and Milling.- 8.1.2.1.2 Radioactive Exposure Pathways for Uranium Mines and Mills.- 8.1.2.2 UFg Conversion, Enrichment, and Fuel Fabrication.- 8.1.2.3 Nuclear Power Plants.- 8.1.2.3.1 Radioactive Effluents of Nuclear Power Plants.- 8.1.2.3.2 Radioactive Effluents from PWR's.- 8.1.2.3.3 Comparison of Radioactive Effluents from PWR's and BWR's.- 8.1.2.3.4 Radioactive Effluents from LMFBR and Other Nuclear Power Plants (CANDU-PHWR and HTGR).- 8.1.2.3.5 Radiation Exposures Caused by Emissions from Nuclear Power Plants.- 8.1.2.4 Spent Fuel Reprocessing and Waste Treatment Centers.- 8.1.2.4.1 Radioactive Effluents from an LWR Low Enriched UO2 Spent Fuel Reprocessing and Waste Treatment Center.- 8.1.2.4.2 Estimated Radioactive Effluents from a Reprocessing and Waste Treatment Center for Spent PUO2/UO2 Fuel.- 8.1.2.4.3 Radiation Exposure Caused by Reprocessing and Waste Treatment Centers.- 8.1.3 Long Range Accumulation of Tritium, Krypton-85, and Carbon-14.- 8.2 Risk Assessment of Nuclear Fission Reactors.- 8.2.1 Methods and Procedures.- 8.2.1.1 General Procedure.- 8.2.1.2 Event Tree Method.- 8.2.1.3 Fault Tree Analysis.- 8.2.2 Releases of Fission Products from a Reactor
|
|
:
|
Building Following a Core Meltdown Accident.- 8.2.2.1 Initiating Events.- 8.2.2.2 Failure of the Containment.- 8.2.2.3 Releases of Radioactivity.- 8.2.2.4 External Events.- 8.2.3 Accident Consequence Model and Human Exposure.- 8.2.4 ResultsofReactor Safety Studies.- 8.2.4.1 Results of Event Tree and Fault Tree Analysis.- 8.2.4.2 Results of Accident Consequence Models.- 8.2.4.2.1 The German Risk Study.- 8.2.4.2.2 The US Reactor Safety Study.- 8.2.4.2.3 More Recent Improvements in Risk Studies.- 8.2.5 Risk Studies of Other Types of Reactors.- 8.2.6 Risk Studies of Fuel Cycle Plants.- 8.2.7 Comparison with Risks of Other Technical Systems.- 8.3 The Risk of Nuclear Proliferation and Possibilities of Its Mitigation.- 8.3.1 History.- 8.3.2 The IAEA Safeguards System.- 8.3.2.1 Material Balance Measurements.- 8.3.3 Safeguards Techniques.- 8.3.4 Safeguards Implementation.- 8.3.5 Advanced Approaches.- 8.3.5.1 Near-Real Time Accountancy and Extended Containment/Surveillance Systems.- 8.3.5.2 International Plutonium Storage.- 8.3.6 Proliferation Aspects of Different Fuel Cycles.- 8.3.6.1 Quantities of Fissile Nuclear Material.- 8.3.6.2 Technical Measures to Improve Diversion Resistance.- 8.3.7 International Agreements and Institutional Arrangements.- 8.3.8 Remaining Proliferation Risk.- Selected Literature.
|
LC Classification
|
:
|
TK9202.G584 2013
|
Added Entry
|
:
|
Gnther Kessler
|
| |