Document Type
|
:
|
BL
|
Record Number
|
:
|
767780
|
Doc. No
|
:
|
b587765
|
Main Entry
|
:
|
Dapeng Cao
|
Title & Author
|
:
|
Porous Polymers : : Design, Synthesis and Applications.\ Dapeng Cao
|
Publication Statement
|
:
|
Cambridge : Royal Society of Chemistry, 2015
|
Series Statement
|
:
|
Monographs in supramolecular chemistry.
|
Page. NO
|
:
|
(324 pages)
|
ISBN
|
:
|
1849739323
|
|
:
|
: 9781849739320
|
Notes
|
:
|
8.4.1 Simulation of Gas Storage in PAFs.
|
Contents
|
:
|
Cover; Contents; Preface; Chapter 1 Introduction; References; Chapter 2 Design Principle of Porous Polymers; 2.1 Design Principle of Porous Polymers; 2.2 Theoretical Simulation; 2.3 Pore Size Tailoring; 2.4 Framework Modification; 2.5 Carbonization; 2.6 Interpenetration Control and Utilization; 2.7 Structural Order and Disorder; References; Chapter 3 Chemical Synthesis of Porous Polymers; 3.1 Introduction; 3.2 Amorphous Porous Polymers; 3.2.1 Insoluble Porous Polymers; 3.2.2 Soluble Porous Polymers; 3.3 Crystalline Covalent Organic Frameworks; 3.4 Emerging Porous Organic Materials. 3.4.1 Porous Organic Cages3.4.2 Mastalerz Compounds; References; Chapter 4 Recent Developments of Hypercrosslinked Microporous Organic Polymers; 4.1 Short Overview of Microporous Materials; 4.2 Synthetic Strategy to Hypercrosslinked Polymers; 4.2.1 Post-crosslinking Procedure; 4.2.2 Direct One-step Self-polycondensation; 4.2.3 External Crosslinking Strategy; 4.3 Conclusion and Outlook; Acknowledgments; References; Chapter 5 Polymers of Instrinsic Microporosity; 5.1 Introduction; 5.2 Design and Synthesis of PIMs; 5.3 Structure of PIMs; 5.4 Porosity of PIMs. 5.4.1 Understanding the Porosity of Porous Polymers5.5 Applications; 5.5.1 Gas Permeation Studies; 5.5.2 Storage; 5.5.3 Catalysis; 5.5.4 Adsorption of Organic Compounds; References; Chapter 6 Rational Design of Covalent Organic Frameworks for High Performance Gas Storage; 6.1 Introduction; 6.2 Theoretical Methods; 6.2.1 Quantum Chemistry; 6.2.2 Molecular Simulations; 6.2.3 Multiscale Simulation; 6.3 Building Blocks Utilized for COF Materials; 6.4 Strategies for the Design of New COF Materials; 6.4.1 Linker Replacement Strategy; 6.4.2 Node Replacement Strategy; 6.4.3 Functionalization Strategy. 6.5 Applications6.5.1 Hydrogen Storage; 6.5.2 Methane Storage; 6.5.3 Carbon Dioxide Storage; 6.5.4 Ammonia Storage; 6.6 Summary and Perspectives; Acknowledgments; References; Chapter 7 Conjugated Microporous Polymers; 7.1 Introduction; 7.2 Synthesis; 7.3 Structure; 7.3.1 Basic Structure; 7.3.2 Structural Order; 7.3.3 Structural Packing; 7.4 Structure and Porosity Analysis; 7.4.1 Structure Analysis; 7.4.2 Porosity Analysis; 7.5 Structure Control and Functionality; 7.5.1 Structure Control; 7.5.2 Synthetic Conditions; 7.5.3 Chemical Functionality; 7.5.4 Electronic and Optical Properties. 7.6 Applications7.7 Limitations; 7.8 Future Directions; 7.9 Summary; References; Chapter 8 Porous Aromatic Frameworks; 8.1 Introduction; 8.2 Synthesis of Porous Aromatic Frameworks; 8.2.1 Yamamoto-type Ullmann Cross-coupling Reaction; 8.2.2 Suzuki Coupling Reaction; 8.2.3 Ionothermal Reaction; 8.2.4 Friedel-Crafts Alkylation Reaction; 8.2.5 Summary; 8.3 Properties and Applications of Porous Aromatic Frameworks; 8.3.1 Gas Sorption and Separation; 8.3.2 Adsorption of Organic Pollutants; 8.3.3 Electroactive and Battery Applications; 8.3.4 Summary; 8.4 Theoretical Simulation and Calculation.
|
Abstract
|
:
|
A comprehensive overview of different porous polymer systems focusing on structure design, synthesis method and properties.
|
Subject
|
:
|
Polymers.
|
Subject
|
:
|
Porous materials.
|
Added Entry
|
:
|
Abbie Trewin
|
|
:
|
Dapeng Cao
|
|
:
|
Jonathan Steed
|
|
:
|
Philip Gale
|
Parallel Title
|
:
|
Monographs in Supramolecular Chemistry
|