|
" Homotopy theory and models : "
Marc Aubry
Document Type
|
:
|
BL
|
Record Number
|
:
|
768026
|
Doc. No
|
:
|
b588012
|
Main Entry
|
:
|
Marc Aubry
|
Title & Author
|
:
|
Homotopy theory and models : : based on lectures held at a DMV seminar in Blaubeuren by H.J. Baues, S. Halperin and J.-M. Lemaire [from October 30 to November 7, 1988]\ Marc Aubry
|
Publication Statement
|
:
|
Basel Birkhäuser, 1995
|
Series Statement
|
:
|
DMV-Seminar., Deutsche Mathematiker-Vereinigung, 1980 ;, 24
|
Page. NO
|
:
|
IX, 117 Seiten Diagramme 24 cm
|
ISBN
|
:
|
0817651853
|
|
:
|
: 3764351853
|
|
:
|
: 9780817651855
|
|
:
|
: 9783764351854
|
Notes
|
:
|
Literaturverz. S. [111] - 113
|
Contents
|
:
|
1: Basic Homotopy Theory.- 1. Homotopy.- 2. Cofibrations and fibrations.- 2: Homology and Homotopy Decomposition of Simply Connected Spaces.- 1. Eckmann-Hilton duality.- 2. Homology and homotopy decompositions.- 3. Application: Classification of 2-stage spaces.- 3: Cofibration Categories.- 1. Basic definitions.- 2. Homotopy in a cofibration category.- 3. Properties of cofibration categories.- 4. Properties of cofibrant models.- 5. The homotopy category as a localization.- 4: Algebraic Examples of Cofibration Categories.- 1. The category CDA.- 2. The category Chain+.- 3. The category DA.- 4. The category DL.- 5: The Rational Homotopy Category of Simply Connected Spaces.- 1. The category of rational spaces.- 2. Quillen's model category.- 3. Sullivan's model theory.- 4. Some easy applications.- Appendix: Relations between the Various Models of a Space.- A.1. A functor between DL and CDA.- A.2. Models over ?/p?.- A.3. Sullivan Models.- 6: Attaching Cells in Topology and Algebra.- 1. Algebraic models of spaces with a cell attached.- 2. Inertia.- 7: Elliptic Spaces.- 1. Finiteness of the formal dimension.- 2. Elliptic models.- 3. Some equalities and inequalities.- 4. Topological interpretation.- 8: Non Elliptic Finite C.W.-Complexes.- 1. Homotopy invariants of spaces.- 2. Sullivan models and the (algebraic) Lusternik-Schnirelmann category.- 3. Lie algebras of finite depth.- 4. The mapping theorem.- 5. Proof of Theorem 0.1.- 9: Towards Integral Algebraic Models of Homotopy Types.- 1. Introduction and general problem.- 2. Algebraic description of the integral homotopy types in dimension 4.- 3. Algebraic description of the integral homotopy types in dimension N.
|
Subject
|
:
|
CW-Komplex
|
Subject
|
:
|
Homotopietheorie
|
LC Classification
|
:
|
QA612.7M373 1995
|
Added Entry
|
:
|
Marc Aubry
|
| |