Document Type
|
:
|
BL
|
Record Number
|
:
|
772913
|
Doc. No
|
:
|
b592907
|
Main Entry
|
:
|
by O. I. Zavialov.
|
Title & Author
|
:
|
Renormalized Quantum Field Theory\ by O. I. Zavialov.
|
Publication Statement
|
:
|
Dordrecht : Springer Netherlands, 1990
|
Series Statement
|
:
|
Mathematics and Its Applications (Soviet Series), 21.
|
Page. NO
|
:
|
(XII, 524 p. :)
|
ISBN
|
:
|
9400925859
|
|
:
|
: 9401076685
|
|
:
|
: 9789400925854
|
|
:
|
: 9789401076685
|
Notes
|
:
|
Bibliographic Level Mode of Issuance: Monograph.
|
Contents
|
:
|
I. Elements of Quantum Field Theory --; 1. Quantum Free Fields --; 2. The Chronological Products of Local Monomials of the Free Field --; 3. Interacting Fields --; II. Parametric Representations for Feynman Diagrams. R-Operation --; 1. Regularized Feynman Diagrams --; 2. Bogoliubov-Parasiuk R-Operation --; 3. Parametric Representations for Renormalized Diagrams --; III. Bogoliubov-Parasiuk Theorem. Other Renormalization Schemes --; 1. Existence of Renormalized Feynman Amplitudes --; 2. Infrared Divergencies and Renormalization in Massless Theories --; 3. The Proof of Theorems 1 and 2 --; 4. Analytic Renormalization and Dimensional Renormalization --; 5. Renormalization ‘without Subtraction’. Renormalization ‘over Asymptotes’ --; IV. Composite Fields. Singularities of the Product of Currents at Short Distances and on the Light Cone --; 1. Renormalized Composite Fields --; 2. Products of Fields at Short Distances --; 3. Products of Currents at Short Distances --; 4. Products of Currents near the Light Cone --; 5. Equations for Composite Fields --; 6. Equations for Regularized Green Functions --; V. Renormalization of Yang-Mills Theories --; 1. Classical Theory and Quantization --; 2. Gauge Invariance and Invariant Renormalizability --; 3. Invariant Regularization and invariant Renormalization Schemes --; 4. Anomalies --; Appendix. On Methods of Studying Deep-Inelastic Scattering --; A.1. Deep-Inelastic Scattering --; A.2. The Traditional Approach to Deep-Inelastic Scattering --; A.3. The Non-Local Light-Cone Expansion as the Basic Tool to Study Deep-Inelastic Scattering --; A Guide to Literature --; References.
|
Abstract
|
:
|
'Et moi. ... - Ii j'avait su CClIIIIIIaIt CD 1'CVCDir, ODe scmcc matbcmatK:s bas I'CIIdcRd!be je D', semis paiDt ~. humaD mcc. It bas put common sease bact Jules Vcmc 'WIIcR it bdoDp, 011!be topmost sbdl JlCXt 10!be dully c:uista' t.bdlcd 'cIiIc:arded DOlI- The series is diverpt; therefore we may be sense'. Eric T. BcII able 10 do sometbiD & with it O. Heavilide Mathematics is a tool for thought. A highly ncceuary tool in a world where both feedback and non- 1inearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the l'Iison d'etre of this series.
|
Subject
|
:
|
Functional analysis.
|
Subject
|
:
|
Mathematics.
|
Subject
|
:
|
Quantum theory.
|
LC Classification
|
:
|
QC175.45B965 1990
|
Added Entry
|
:
|
O I Zavialov
|
Parallel Title
|
:
|
Mathematics and Its Applications Soviet Series, vol. 21
|