|  | 
                    " Trees "
                    transl. from the French by John Stillwell.
 
 
            
                
                    | Document Type | : | BL |  
                    | Record Number | : | 789722 |  
                    | Doc. No | : | b609746 |  
                    | Main Entry | : | transl. from the French by John Stillwell. |  
                    | Title & Author | : | Trees\  transl. from the French by John Stillwell. |  
                    | Publication Statement | : | Berlin [West]:  Springer,  1980 |  
                    | Page. NO | : | IX, 142 Seiten |  
                    | ISBN | : | 0387101039 |  
                    |  | : | : 3540101039 |  
                    |  | : | : 9780387101033 |  
                    |  | : | : 9783540101031 |  
                    | Notes | : | Literaturverz. S. 137-139. |  
                    | Contents | : | I. Trees and Amalgams.-  1 Amalgams.- 1.1 Direct limits.- 1.2 Structure of amalgams.- 1.3 Consequences of the structure theorem.- 1.4 Constructions using amalgams.- 1.5 Examples.-  2 Trees.- 2.1 Graphs.- 2.2 Trees.- 2.3 Subtrees of a graph.-  3 Trees and free groups.- 3.1 Trees of representatives.- 3.2 Graph of a free group.- 3.3 Free actions on a tree.- 3.4 Application: Schreier's theorem.- Appendix: Presentation of a group of homeomorphisms.-  4 Trees and amalgams.- 4.1 The case of two factors.- 4.2 Examples of trees associated with amalgams.- 4.3 Applications.- 4.4 Limit of a tree of groups.- 4.5 Amalgams and fundamental domains (general case).-  5 Structure of a group acting on a tree.- 5.1 Fundamental group of a graph of groups.- 5.2 Reduced words.- 5.3 Universal covering relative to a graph of groups . ..- 5.4 Structure theorem.- 5.5 Application: Kurosh's theorem.-  6 Amalgams and fixed points.- 6.1 The fixed point property for groups acting on trees.- 6.2 Consequences of property (FA).- 6.3 Examples.- 6.4 Fixed points of an automorphism of a tree.- 6.5 Groups with fixed points (auxiliary results).- 6.6 The case of SL3(Z).- II. SL2.-  1 The tree of SL2 over a local field.- 1.1 The tree.- 1.2 The groups GL(V) and SL(V).- 1.3 Action of GL(V) on the tree of V; stabilizers.- 1.4 Amalgams.- 1.5 Ihara's theorem.- 1.6 Nagao's theorem.- 1.7 Connection with Tits systems.-  2 Arithmetic subgroups of the groups GL2 and SL2 over a function field of one variable.- 2.1 Interpretation of the vertices of F\X as classes of vector bundles of rank over C 96.- 2.2 Bundles of rank and decomposable bundles 99.- 2.3 Structure of ?\X.- 2.4 Examples.- 2.5 Structure of ?.- 2.6 Auxiliary results.- 2.7 Structure of ?: case of a finite field.- 2.8 Homology.- 2.9 Euler-Poincare characteristic. |  
                    | Subject | : | ;Baum lt;Math.gt; |  
                    | Subject | : | Amalgam lt;Math.gt |  
                    | Subject | : | Lineare Gruppe. |  
                    | LC Classification | : | QA171.T736 1980 |  
                    | Added Entry | : | Jean Pierre Serre |  
                    |  | : | John Stillwell |  
                    | Parallel Title | : | Arbres, Amalgames, SL2. |  |  |