رکورد قبلیرکورد بعدی

" Potential risk of hydrogen embrittlement of Zn-Ni coated high strength steel "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 804361
Doc. No : TL49191
Call number : ‭1865328082;‮ ‬10240023‬
Main Entry : Alhamami, Mohamed Tariq
Title & Author : Potential risk of hydrogen embrittlement of Zn-Ni coated high strength steel\ Md Saimon IslamMontoya, Arturo
College : The University of Texas at San Antonio
Date : 2016
Degree : M.S.
field of study : Mechanical Engineering
student score : 2016
Page No : 85
Note : Committee members: Govindaraju, Madhavrao; Maldonado, Victor
Note : Place of publication: United States, Ann Arbor; ISBN=978-1-369-44024-9
Abstract : Within the aircraft industry, high strength steels have been used for aircraft components (e.g., main landing gear, fasteners, etc). These steels have traditionally been protected using cadmium electroplating. As a result of the carcinogenic nature of cadmium, its use has been severely restricted. Electroplated ZnNi has been identified as a replacement material for the cadmium coating. Demonstration plating lines have been implemented in both Air Force and NAVAIR depots. However, the effects of hydrogen generated from differences in electrochemical potential between the ZnNi coating and exposed steel at a defect site have raised concern. The objective of this work is to determine the potential effect of hydrogen on the susceptibility of ZnNi coated 4340 steel to Hydrogen Embrittlement. In this work, susceptibility of the substrate AISI 4340 steel to HE as a function of cathodic potential will be shown. Slow strain rate tests (SSRT) of smooth bar samples made of high strength AISI 4340 are being conducted to determine susceptibility to HE. In the first set of SSR experiments, bare steel samples were exposed to a NaCl immersion environment while being held at one of five different electrochemical potentials. The effect of potential on time to failure and other properties will be explored. A second set of SSR tests were performed under atmospheric exposure conditions at 84% RH. This value of RH is above the deliquescence point of NaCl and was controlled within the enclosed SSR test cell using a saturated solution of Sodium Sulfate at the bottom of the cell. NaCl salt was deposited on the SSR sample gauge section by a salt spray technique. Filter paper soaked in saturated NaCl solution was used to act as a salt bridge for the reference and counter electrodes under atmospheric condition. The effect of electrochemical potential on the cracking behavior of the atmospherically exposed samples will also be described. SEM characterization of the fractured samples was performed to validate embrittlement. Results from this effort will be used by both the Air Force and Navy to assess the need for enhanced risk based inspection of ZnNi coated steel parts. Engineering modeling was done for different defect sizes on the sample and results were used to validate engineering modeling approaches to predict corrosion and cracking performance during system design.
Subject : Mechanical engineering; Materials science
Descriptor : Applied sciences
Added Entry : Montoya, Arturo
Added Entry : Mechanical EngineeringThe University of Texas at San Antonio
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟