Document Type
|
:
|
BL
|
Record Number
|
:
|
810083
|
Doc. No
|
:
|
b624099
|
Uniform Title
|
:
|
Svingninger og Bølgers Fyssikk.English
|
Main Entry
|
:
|
Vistnes, Arnt Inge
|
Title & Author
|
:
|
Physics of oscillations and waves : : with use of Matlab and Python /\ Arnt Inge Vistnes.
|
Series Statement
|
:
|
Undergraduate texts in physics,
|
Page. NO
|
:
|
1 online resource (xviii, 576 pages) :: illustrations (some color).
|
ISBN
|
:
|
9783319723143
|
|
:
|
: 3319723146
|
|
:
|
9783319723136
|
|
:
|
3319723138
|
|
:
|
: 9783319723150
|
|
:
|
: 3319723154
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references and index.
|
Contents
|
:
|
Chapter 1: Introduction -- Chapter 2: Free and damped oscillations -- Chapter 3: Forced oscillations and resonance -- Chapter 4: Numerical methods -- Chapter 5: Fourier analysis -- Chapter 6: Waves -- Chapter 7: Sound -- Chapter 8: Dispersion and surface waves on water -- Chapter 9: Electromagnetic waves -- Chapter 10: Reflection, transmission and polarization -- Chapter 11: Measurements of light, dispersion of light, colours -- Chapter 12: Geometric optics -- Chapter 13: Interference, diffraction -- Chapter 14: Wavelet transformation -- Chapter 15: Coherence, dipole radiation and lasers -- Chapter 16: Skin depth and wave guides.
|
Abstract
|
:
|
In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can't readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.
|
Subject
|
:
|
Waves.
|
Subject
|
:
|
Oscillations.
|
Subject
|
:
|
Python (Computer program language)
|
Subject
|
:
|
Science-- Mathematical Physics.
|
Subject
|
:
|
Science-- Earth Sciences-- Meteorology Climatology.
|
Subject
|
:
|
Science-- Mechanics-- Dynamics-- Fluid Dynamics.
|
Subject
|
:
|
Mathematical physics.
|
Subject
|
:
|
Earth sciences.
|
Subject
|
:
|
Fluid mechanics.
|
Subject
|
:
|
Science-- Mechanics-- General.
|
Subject
|
:
|
Classical mechanics.
|
Subject
|
:
|
Oscillations.
|
Subject
|
:
|
Python (Computer program language)
|
Subject
|
:
|
Waves.
|
Subject
|
:
|
Classical Mechanics.
|
Subject
|
:
|
Mathematical Methods in Physics.
|
Subject
|
:
|
Numerical and Computational Physics, Simulation.
|
Subject
|
:
|
Atmospheric Sciences.
|
Subject
|
:
|
Fluid- and Aerodynamics.
|
Subject
|
:
|
MATLAB.
|
|
:
|
MATLAB.
|
Dewey Classification
|
:
|
531/.1133
|
LC Classification
|
:
|
QC157
|
Added Entry
|
:
|
Naqvi, Razi
|