رکورد قبلیرکورد بعدی

" Bayesian cost-effectiveness analysis of medical treatments / "


Document Type : BL
Record Number : 842657
Main Entry : Moreno, Elías
Title & Author : Bayesian cost-effectiveness analysis of medical treatments /\ Elias Moreno, Department of Statistics, University of Granada, Granada, Spain ; Francisco Jose Vazquez-Polo, Miguel Angel Negrin-Hernandez, Department of Quantitative Methods, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
Publication Statement : Boca Raton :: Chapman & Hall/CRC,, 2019
: , ©2019
Series Statement : Chapman & Hall/CRC biostatistics series
Page. NO : 1 online resource (xv, 283 pages) :: illustrations
ISBN : 1315188856
: : 1351744356
: : 1351744364
: : 1351744372
: : 9781315188850
: : 9781351744355
: : 9781351744362
: : 9781351744379
: 1138731730
: 9781138731738
Bibliographies/Indexes : Includes bibliographical references and index
Contents : Health economics evaluation -- Statistical inference in parametric models -- Statistical decision theory -- Cost-effectiveness analysis: optimal treatments -- Cost-effectiveness analysis for heterogeneous data -- Subgroup cost-effectiveness analysis
Abstract : Cost-effectiveness analysis is becoming an increasingly important tool for decision making in the health systems. Cost-Effectiveness of Medical Treatments formulates the cost-effectiveness analysis as a statistical decision problem, identifies the sources of uncertainty of the problem, and gives an overview of the frequentist and Bayesian statistical approaches for decision making. Basic notions on decision theory such as space of decisions, space of nature, utility function of a decision and optimal decisions, are explained in detail using easy to read mathematics. Features Focuses on cost-effectiveness analysis as a statistical decision problem and applies the well-established optimal statistical decision methodology. Discusses utility functions for cost-effectiveness analysis. Enlarges the class of models typically used in cost-effectiveness analysis with the incorporation of linear models to account for covariates of the patients. This permits the formulation of the group (or subgroup) theory. Provides Bayesian procedures to account for model uncertainty in variable selection for linear models and in clustering for models for heterogeneous data. Model uncertainty in cost-effectiveness analysis has not been considered in the literature. Illustrates examples with real data. In order to facilitate the practical implementation of real datasets, provides the codes in Mathematica for the proposed methodology. The motivation for the book is to make the achievements in cost-effectiveness analysis accessible to health providers, who need to make optimal decisions, to the practitioners and to the students of health sciences. Elaias Moreno is Professor of Statistics and Operational Research at the University of Granada, Spain, Corresponding Member of the Royal Academy of Sciences of Spain, and elect member of ISI. Francisco Josae Vaazquez-Polo is Professor of Mathematics and Bayesian Methods at the University of Las Palmas de Gran Canaria, and Head of the Department of Quantitative Methods. Miguel aAngel Negrain is Senior Lecturer in the Department of Quantitative Methods at the ULPGC. His main research topics are Bayesian methods applied to Health Economics, economic evaluation and cost-effectiveness analysis, meta-analysis and equity in the provision of healthcare services.
Subject : Bayesian statistical decision theory.
Subject : Therapeutics.
Subject : Bayesian statistical decision theory.
Subject : MATHEMATICS-- Probability Statistics-- General.
Subject : MEDICAL-- Biostatistics.
Subject : Therapeutics.
Dewey Classification : ‭615.1015195‬
LC Classification : ‭QA279.5‬‭.M67 2019eb‬
Added Entry : Negrín-Hernández, Miguel Angel
: Vázquez Polo, Francisco José
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟