Document Type
|
:
|
BL
|
Record Number
|
:
|
845086
|
Main Entry
|
:
|
Rossi, Peter E., (Peter Eric),1955-
|
Title & Author
|
:
|
Bayesian non- and semi-parametric methods and applications /\ Peter E. Rossi.
|
Publication Statement
|
:
|
Princeton :: Princeton University Press,, [2014]
|
|
:
|
, ©2014
|
Series Statement
|
:
|
The econometric and tinbergen institutes lectures
|
Page. NO
|
:
|
1 online resource (xiii, 202 pages) :: illustrations
|
ISBN
|
:
|
1400850304
|
|
:
|
: 9781400850303
|
|
:
|
0691145326
|
|
:
|
1306548020
|
|
:
|
9780691145327
|
|
:
|
9781306548021
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references (pages 195-200) and index.
|
Contents
|
:
|
1.1. Finite Mixture of Normals Likelihood Function -- 1.2. Maximum Likelihood Estimation -- 1.3. Bayesian Inference for the Mixture of Normals Model -- 1.4. Priors and the Bayesian Model -- 1.5. Unconstrained Gibbs Sampler -- 1.6. Label-Switching -- 1.7. Examples -- 1.8. Clustering Observations -- 1.9. Marginalized Samplers -- \
|
|
:
|
2.1. Dirichlet Processes-A Construction -- 2.2. Finite and Infinite Mixture Models -- 2.3. Stick-Breaking Representation -- 2.4. Polya Urn Representation and Associated Gibbs Sampler -- 2.5. Priors on DP Parameters and Hyper-parameters -- 2.6. Gibbs Sampler for DP Models and Density Estimation -- 2.7. Scaling the Data -- 2.8. Density Estimation Examples.
|
|
:
|
3.1. Joint vs. Conditional Density Approaches -- 3.2. Implementing the Joint Approach with Mixtures of Normals -- 3.3. Examples of Non-parametric Regression Using Joint Approach -- 3.4. Discrete Dependent Variables -- 3.5. An Example of Expenditure Function Estimation.
|
|
:
|
4.1. Semi-parametric Regression with DP Priors -- 4.2. Semi-parametric IV Models.
|
|
:
|
5.1. Introduction -- 5.2. Semi-parametric Random Coefficient Logit Models -- 5.3. An Empirical Example of a Semi-parametric Random Coefficient Logit Model.
|
|
:
|
6.1. When Are Non-parametric and Semi-parametric Methods Most Useful? -- 6.2. Semi-parametric or Non-parametric Methods? -- 6.3. Extensions.
|
Abstract
|
:
|
This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number.
|
Subject
|
:
|
Bayesian statistical decision theory.
|
Subject
|
:
|
Econometrics.
|
Subject
|
:
|
Economics, Mathematical.
|
Subject
|
:
|
Bayesian statistical decision theory.
|
Subject
|
:
|
BUSINESS ECONOMICS-- Economics-- General.
|
Subject
|
:
|
BUSINESS ECONOMICS-- Reference.
|
Subject
|
:
|
Econometrics.
|
Subject
|
:
|
Economics, Mathematical.
|
Subject
|
:
|
Ekonometri.
|
Dewey Classification
|
:
|
330.01/519542
|
LC Classification
|
:
|
HB139.R64 2014eb
|
NLM classification
|
:
|
83.03bcl
|
|
:
|
83.03.bcl
|