This page uses JavaScript and requires a JavaScript enabled browser.Your browser is not JavaScript enabled.
مرکز و کتابخانه مطالعات اسلامی به زبان های اروپایی
منو
درگاههای جستجو
مدارک
جستجوی پیشرفته
مرور
جستجو در سایر کتابخانه ها
مستندات
جستجوی پیشرفته
مرور
منابع دیجیتال
تمام متن
اصطلاحنامه
درختواره
پرسش و پاسخ
سوالات متداول
پرسش از کتابدار
پیگیری پرسش
ورود
ثبت نام
راهنما
خطا
رکورد قبلی
رکورد بعدی
"
Bayesian non- and semi-parametric methods and applications /
"
Peter E. Rossi.
Document Type
:
BL
Record Number
:
1044530
Doc. No
:
b798900
Main Entry
:
Reyment, R. A.
Title & Author
:
Applied factor analysis in the natural sciences /\ Richard A. Reyment, K.G. Jöreskog ; appendix by Leslie F. Marcus.
Edition Statement
:
1st pbk. ed.
Publication Statement
:
Cambridge [England] ;New York, NY, USA :: Cambridge University Press,, 1996.
Page. NO
:
1 online resource (xiii, 202 pages) :: illustrations
ISBN
:
1400850304
:
: 9781400850303
:
0691145326
:
1306548020
:
9780691145327
:
9781306548021
Bibliographies/Indexes
:
Includes bibliographical references (pages 195-200) and index.
Contents
:
1.1. Finite Mixture of Normals Likelihood Function -- 1.2. Maximum Likelihood Estimation -- 1.3. Bayesian Inference for the Mixture of Normals Model -- 1.4. Priors and the Bayesian Model -- 1.5. Unconstrained Gibbs Sampler -- 1.6. Label-Switching -- 1.7. Examples -- 1.8. Clustering Observations -- 1.9. Marginalized Samplers -- \
:
2.1. Dirichlet Processes-A Construction -- 2.2. Finite and Infinite Mixture Models -- 2.3. Stick-Breaking Representation -- 2.4. Polya Urn Representation and Associated Gibbs Sampler -- 2.5. Priors on DP Parameters and Hyper-parameters -- 2.6. Gibbs Sampler for DP Models and Density Estimation -- 2.7. Scaling the Data -- 2.8. Density Estimation Examples.
:
3.1. Joint vs. Conditional Density Approaches -- 3.2. Implementing the Joint Approach with Mixtures of Normals -- 3.3. Examples of Non-parametric Regression Using Joint Approach -- 3.4. Discrete Dependent Variables -- 3.5. An Example of Expenditure Function Estimation.
:
4.1. Semi-parametric Regression with DP Priors -- 4.2. Semi-parametric IV Models.
:
5.1. Introduction -- 5.2. Semi-parametric Random Coefficient Logit Models -- 5.3. An Empirical Example of a Semi-parametric Random Coefficient Logit Model.
:
6.1. When Are Non-parametric and Semi-parametric Methods Most Useful? -- 6.2. Semi-parametric or Non-parametric Methods? -- 6.3. Extensions.
Abstract
:
This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number.
Subject
:
Bayesian statistical decision theory.
Subject
:
Econometrics.
Subject
:
Economics, Mathematical.
Subject
:
Bayesian statistical decision theory.
https://lib.clisel.com/site/catalogue/845086
کپی لینک
پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال
1 - آیا از کیفیت منابع دیجیتال راضی هستید؟
X
کم
متوسط
زیاد
ذخیره
پاک کن