رکورد قبلیرکورد بعدی

" Learn RStudio IDE : "


Document Type : BL
Record Number : 851290
Main Entry : Campbell, Matthew
Title & Author : Learn RStudio IDE : : quick, effective, and productive data science /\ Matthew Campbell.
Publication Statement : [New York, NY] :: Apress,, [2019]
Page. NO : 1 online resource
ISBN : 1484245113
: : 1484245121
: : 9781484245118
: : 9781484245125
: 1484245105
: 9781484245101
Notes : Includes index.
Contents : 1. Installing RStudio -- 2. Hello World -- 3. RStudio Views -- 4. RStudio Projects -- 5. Repeatable Analysis -- 6. Essential R Packages: Tidyverse -- 7. Data Visualization -- 8. R Markdown -- 9. Shiny R Dashboards -- 10. Custom R Packages -- 11. Code Tools -- 12. R Programming.
Abstract : Discover how to use the popular RStudio IDE as a professional tool that includes code refactoring support, debugging, and Git version control integration. This book gives you a tour of RStudio and shows you how it helps you do exploratory data analysis; build data visualizations with ggplot; and create custom R packages and web-based interactive visualizations with Shiny. In addition, you will cover common data analysis tasks including importing data from diverse sources such as SAS files, CSV files, and JSON. You will map out the features in RStudio so that you will be able to customize RStudio to fit your own style of coding. Finally, you will see how to save a ton of time by adopting best practices and using packages to extend RStudio. Learn RStudio IDE is a quick, no-nonsense tutorial of RStudio that will give you a head start to develop the insights you need in your data science projects. What You Will Learn Quickly, effectively, and productively use RStudio IDE for building data science applications Install RStudio and program your first Hello World application Adopt the RStudio workflow Make your code reusable using RStudio Use RStudio and Shiny for data visualization projects Debug your code with RStudio Import CSV, SPSS, SAS, JSON, and other data Who This Book Is For Programmers who want to start doing data science, but don't know what tools to focus on to get up to speed quickly.
Subject : Data mining.
Subject : Data mining.
Dewey Classification : ‭006.3/12‬
LC Classification : ‭QA76.9.D343‬‭C36 2019‬
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟