Document Type
|
:
|
BL
|
Record Number
|
:
|
854227
|
Main Entry
|
:
|
Frank, Randy.
|
Title & Author
|
:
|
Understanding smart sensors /\ Randy Frank.
|
Edition Statement
|
:
|
Third edition.
|
Publication Statement
|
:
|
Boston :: Artech House,, [2013]
|
|
:
|
, ©2013
|
Series Statement
|
:
|
Artech House integrated microsystems library
|
Page. NO
|
:
|
1 online resource (xix, 367 pages) :: illustrations
|
ISBN
|
:
|
1523117702
|
|
:
|
: 1608075087
|
|
:
|
: 9781523117703
|
|
:
|
: 9781608075089
|
|
:
|
1608075079
|
|
:
|
9781608075072
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references (pages 333-334) and index.
|
Contents
|
:
|
Machine generated contents note: ch. 1 Smart Sensor Basics -- 1.1. Introduction -- 1.2. Mechanical-Electronic Transitions in Sensing -- 1.3. Nature of Sensors -- 1.4. Integration of Micromachining and Microelectronics -- 1.5. Application Example -- 1.6. Summary -- References -- Selected Bibliography -- ch. 2 Micromachining -- 2.1. Introduction -- 2.2. Bulk Micromachining -- 2.3. Wafer Bonding -- 2.3.1. Silicon-on-Silicon Bonding -- 2.3.2. Silicon-on-Glass (Anodic) Bonding -- 2.3.3. Silicon Fusion Bonding -- 2.3.4. Wafer Bonding for More Complex Structures and Adding ICs -- 2.4. Surface Micromachining -- 2.4.1. Squeeze-Film Damping -- 2.4.2. Stiction -- 2.4.3. Particulate Control -- 2.4.4.Combinations of Surface and Bulk Micromachining -- 2.5. Other Micromachining Techniques -- 2.5.1. The LIGA Process -- 2.5.2. Dry Etching Processes -- 2.5.3. Micromilling -- 2.5.4. Lasers in Micromachining -- 2.6.Combining MEMS with IC Fabrication -- 2.7. Other Micromachined Materials -- 2.7.1. Diamond as an Alternate Sensor Material --
|
|
:
|
11.3.2. Current Sensing in Power ICs -- 11.3.3. Diagnostics -- 11.3.4. MEMS Relays -- 11.4. Other System Aspects -- 11.4.1. Batteries -- 11.4.2. Field Emission Displays -- 11.4.3. System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference -- 11.5. Application Example -- 11.6. Summary -- References -- ch. 12 Standards for Smart Sensing -- 12.1. Introduction -- 12.2. Setting the Standards for Smart Sensors and Systems -- 12.3. IEEE 1451.1 -- 12.3.1.Network-Capable Application Processor -- 12.3.2.Network Communication Models -- 12.4. IEEE 1451.2 -- 12.4.1. STIM -- 12.4.2. Transducer Electronic Data Sheet -- 12.4.3. TII -- 12.4.4. Calibration/Correction Engine -- 12.4.5. Sourcing Power to STIMs -- 12.4.6. Representing Physical Units in the TEDS -- 12.5. IEEE 1451.3 -- 12.6. IEEE 1451.4 -- 12.7. IEEE 1451.5 -- 12.8. IEEE P1451.6 -- 12.9. IEEE 1451.7 -- 12.10. Extending the System to the Network -- 12.11. Application Example -- 12.12. Summary -- References -- Selected Bibliography -- ch. 13 More Standards Impacting Sensors -- 13.1. Introduction -- 13.2. Sensor Plug and Play -- 13.3. Universal Serial Bus -- 13.4. Development Tools Establish De Facto Standards -- 13.5. Alternate Standards -- 13.5.1. Airplane Networks -- 13.5.2. Automotive Safety Network --
|
|
:
|
13.5.3. Another Automotive Safety Network -- 13.5.4. Automotive Sensor Protocol -- 13.6. Consumer/Cell Phone Apps -- 13.7. Application Example -- 13.8. Summary -- References -- ch. 14 Sensor Fusion -- 14.1. Introduction -- 14.2. Sensor and Other Fusion Background -- 14.3. Automotive Applications -- 14.3.1. Ranging and Vision -- 14.3.2. Sensor Fusion for Virtual Sensors -- 14.3.3. Autonomous Driving -- 14.4. Industrial (Robotic) Applications -- 14.5. Consumer Applications -- 14.5.1. Fusion Software in the Sensor -- 14.5.2. Separate Fusion Software -- 14.5.3. Flexible Fusion Software -- 14.5.4. Agnostic Sensor Fusion -- 14.5.5. Simulation and Testing -- 14.6. Application Example -- 14.7. Summary -- References -- Selected Bibliography -- ch. 15 Energy Harvesting for Wireless Sensor Nodes -- 15.1. Introduction -- 15.2. Applications Drive Technology Implementation and Development -- 15.2.1. Structural Health Monitoring -- 15.2.2. Building Automations Systems -- 15.2.3. Industrial Applications -- 15.2.4. Automotive -- 15.2.5. Aircraft -- 15.2.6. Portable Consumer -- 15.2.7. Remote Distributed Applications -- 15.3.Complete System Consideration -- 15.4. EH Technologies -- 15.4.1. Thermoelectric EH -- 15.4.2. Piezoelectric EH -- 15.4.3. Photovoltaic EH -- 15.4.4. Electromagnetic EH -- 15.4.5. RF EH --
|
|
:
|
15.4.6. Electromechanical EH -- 15.4.7. Multiple Energy Sources -- 15.4.8. Future Concepts -- 15.5. Energy Storage -- 15.5.1. Batteries -- 15.5.2. Ultracapacitors -- 15.6. Energy Budget -- 15.6.1. Power Management ICs -- 15.6.2. MCUs -- 15.6.3. Wireless Transmission -- 15.6.4. Sensor Power Consumption -- 15.7. Development Systems -- 15.8. Application Example -- 15.9. Summary -- References -- Selected Bibliography -- ch. 16 The Next Phase of Sensing Systems -- 16.1. Introduction -- 16.2. Future Sensor Plus Semiconductor Capabilities -- 16.2.1. Monolithic Versus Package-Level Integration -- 16.3. Future System Requirements -- 16.3.1. Sensing in Automobiles -- 16.3.2. Sensing in Smart Phones -- 16.3.3. Health Care Sensors -- 16.4. Software, Sensing, and the System -- 16.4.1. Sensor Apps -- 16.4.2. Cloud Sensing -- 16.5. Trusted Sensing -- 16.6. Alternate Views of Smart Sensing -- 16.7. The Smart Loop -- 16.8. Application Example -- 16.9. Summary -- Acknowledgment -- References -- Selected Bibliography -- Appendix A -- List of Web Sites for Additional Smart Sensor and MEMS Information -- Selected Bibliography -- Smart Sensor Acronym Decoder and Glossary.
|
|
:
|
2.7.2. Metal Oxides and Piezoelectric Sensing -- 2.7.3. Films on Microstructures -- 2.7.4. Micromachining Metal Structures -- 2.7.5. Carbon Nanotube MEMS -- 2.8. MEMS Foundry Services and Software Tools -- 2.9. Application Example -- 2.10. Summary -- References -- Selected Bibliography -- ch. 3 The Nature of Semiconductor Sensor Output -- 3.1. Introduction -- 3.2. Sensor Output Characteristics -- 3.2.1. Wheatstone Bridge -- 3.2.2. Piezoresistivity in Silicon -- 3.2.3. Semiconductor Sensor Definitions -- 3.2.4. Static Versus Dynamic Operation -- 3.3. Other Sensing Technologies -- 3.3.1. Capacitive Sensing -- 3.3.2. Piezoelectric Sensing -- 3.3.3. The Hall-Effect -- 3.3.4. Chemical Sensors -- 3.3.5. Improving Sensor Characteristics -- 3.4. Digital Output Sensors -- 3.4.1. Incremental Optical Encoders -- 3.4.2. Digital Techniques -- 3.5. Noise/Interference Aspects -- 3.6. Low Power, Low Voltage Sensors -- 3.6.1. Impedance -- 3.7. Analysis of Sensitivity Improvement --
|
|
:
|
3.7.1. Thin Diaphragm -- 3.7.2. Increase Diaphragm Area -- 3.7.3. Improve Topology -- 3.8. Application Example -- 3.9. Summary -- References -- ch. 4 Getting Sensor Information Into the Microcontroller -- 4.1. Introduction -- 4.2. Amplification and Signal Conditioning -- 4.2.1. Instrumentation Amplifiers -- 4.2.2. Sleep-Mode Circuitry for Reducing Power -- 4.2.3. Rail to Rail Operational Amplifiers -- 4.2.4. Switched-Capacitor Amplifier -- 4.2.5. Barometer Application Circuit -- 4.2.6.4- to 20-mA Signal Transmitter -- 4.2.7. Schmitt Trigger -- 4.3. Separate Versus Integrated Signal Conditioning -- 4.3.1. Integrated Signal Conditioning -- 4.3.2. External Signal Conditioning -- 4.4. Digital Conversion -- 4.4.1.A/D Converters -- 4.4.2. Performance of A/D Converters -- 4.4.3. Implications of A/D Accuracy and Errors -- 4.5. On-Line Tool for Evaluating a Sensor Interface Design -- 4.6. Application Example -- 4.7. Summary -- References -- Selected Bibliography -- ch. 5 Using MCUs/DSPs to Increase Sensor IQ -- 5.1. Introduction -- 5.1.1. Other IC Technologies -- 5.1.2. Logic Requirements -- 5.2. MCU Control -- 5.3. MCUs for Sensor Interface -- 5.3.1. Peripherals -- 5.3.2. Memory -- 5.3.3. Input/Output -- 5.3.4. On-Board A/D Conversion -- 5.3.5. Power Saving Capability -- 5.3.6. Local Voltage or Current Regulation --
|
|
:
|
5.4. DSP Control -- 5.4.1. Digital Signal Controllers -- 5.4.2. Field Programmable Gate Arrays -- 5.4.3. Algorithms Versus Look-Up Tables -- 5.5. Techniques and Systems Considerations -- 5.5.1. Linearization -- 5.5.2. PWM Control -- 5.5.3. Autozero and Autorange -- 5.5.4. Diagnostics -- 5.5.5. Reducing EMC/RFI -- 5.5.6. Indirect (Computed not Sensed) Versus Direct Sensing -- 5.6. Software, Tools, and Support -- 5.6.1. Design-in Support -- 5.7. Sensor Integration -- 5.8. Application Example -- 5.9. Summary -- References -- ch. 6 Communications for Smart Sensors -- 6.1. Introduction -- 6.2. Background and Definitions -- 6.2.1. Definitions -- 6.2.2. Background -- 6.3. Sources (Organizations) and Standards -- 6.4. Automotive Protocols -- 6.4.1. CAN Protocol -- 6.4.2. LIN Protocol -- 6.4.3. Media Oriented Systems Transport -- 6.4.4. FlexRay -- 6.4.5. Other Automotive Protocol Aspects -- 6.5. Industrial Networks -- 6.5.1. Example Industrial Protocols -- 6.6. Protocols in Other Applications -- 6.7. Protocols in Silicon -- 6.7.1. MCU with Integrated CAN -- 6.7.2. LIN Implementation -- 6.7.3. Ethernet Controller -- 6.8. Transitioning Between Protocols -- 6.9. Application Example -- 6.10. Summary -- References -- Additional References -- ch. 7 Control Techniques -- 7.1. Introduction -- 7.1.1. Programmable Logic Controllers --
|
|
:
|
7.1.2. Open-Versus Closed-Loop Systems -- 7.1.3. PID Control -- 7.2. State Machines -- 7.3. Fuzzy Logic -- 7.4. Neural Networks -- 7.5.Combined Fuzzy Logic and Neural Networks -- 7.6. Adaptive Control -- 7.6.1. Observers for Sensing -- 7.7. Other Control Areas -- 7.7.1. RISC Versus CISC -- 7.8. Impact of Artificial Intelligence -- 7.9. Application Example -- 7.10. Summary -- References -- ch. 8 Wireless Sensing -- 8.1. Introduction -- 8.1.1. The RF Spectrum -- 8.1.2. Spread Spectrum -- 8.2. Wireless Data and Communications -- 8.3. Wireless Sensing Networks -- 8.3.1. ZigBee -- 8.3.2. ZigBee-Like Wireless -- 8.3.3. ANT+ -- 8.3.4.6LoWPAN -- 8.3.5. Near Field Communication (NFC) -- 8.3.6.Z-Wave -- 8.3.7. Dust Networks -- 8.3.8. Other RF Wireless Solutions -- 8.3.9. Optical Signal Transmission -- 8.4. Industrial Wireless Sensing Networks -- 8.5. RF Sensing -- 8.5.1. Surface Acoustic Wave Devices -- 8.5.2. Radar -- 8.5.3. Light Detection and Ranging (LIDAR) -- 8.5.4. Global Positioning System -- 8.5.5. Remote Emissions Sensing -- 8.5.6. Remote Keyless Entry -- 8.5.7. Intelligent Transportation System -- 8.5.8. RF-ID -- 8.5.9. Other Remote Sensing -- 8.6. Telemetry -- 8.7. RF MEMS -- 8.8. Application Example -- 8.9. Summary -- References -- Selected Bibliography.
|
|
:
|
Ch. 9 MEMS Beyond Sensors -- 9.1. Introduction -- 9.2. MEMS Actuators -- 9.2.1. Microvalves -- 9.2.2. Micromotors -- 9.2.3. Micropumps -- 9.2.4. Microdynamometer -- 9.2.5. Microsteam Engine -- 9.2.6. Actuators in Other Semiconductor Materials -- 9.3. Other Micromachined Structures -- 9.3.1. Cooling Channels -- 9.3.2. Microoptics -- 9.3.3. Microgripper -- 9.3.4. Microprobes -- 9.3.5. Micromirrors -- 9.3.6. Heating Elements -- 9.3.7. Thermionic Emitters -- 9.3.8. Field Emission Devices -- 9.3.9. Unfoldable Microelements -- 9.3.10. Micronozzles -- 9.3.11. Interconnects for Stacked Wafers -- 9.3.12. Nanoguitar -- 9.4. Application Example -- 9.5. Summary -- References -- ch. 10 Packaging, Testing, and Reliability Implications of Smarter Sensors -- 10.1. Introduction -- 10.2. Semiconductor Packaging Applied to Sensors -- 10.2.1. Increased Pin Count -- 10.3. Hybrid Packaging -- 10.3.1. Ceramic Packaging and Ceramic Substrates -- 10.3.2. Multichip Modules -- 10.3.3. Dual-Chip Packaging -- 10.3.4. BGA Packaging -- 10.4.Common Packaging for Sensors -- 10.4.1. Plastic Packaging -- 10.4.2. Surface-Mount Packaging -- 10.4.3. Flip-Chip -- 10.4.4. Wafer-Level Packaging -- 10.4.5.3-D Packaging -- 10.5. Reliability Implications -- 10.5.1. The Physics of Failure -- 10.5.2. Wafer-Level Sensor Reliability -- 10.6. Testing Smarter Sensors -- 10.7. Application Example -- 10.8. Summary -- References -- ch. 11 Mechatronics and Sensing Systems -- 11.1. Introduction -- 11.1.1. Integration and Mechatronics -- 11.2. Smart-Power ICs -- 11.3. Embedded Sensing -- 11.3.1. Temperature Sensing --
|
Abstract
|
:
|
Now in its third edition, Understanding Smart Sensors is the most complete, up-to-date, and authoritative summary of the latest applications and developments impacting smart sensors in a single volume. This thoroughly expanded and revised edition of an Artech bestseller contains a wealth of new material, including critical coverage of sensor fusion and energy harvesting, the latest details on wireless technology, the role and challenges involved with sensor apps and cloud sensing, greater emphasis on applications throughout the book, and dozens of figures and examples of current technologies from over 50 companies. This edition provides you with knowledge regarding a broad spectrum of possibilities for technology advancements based on current industry, university and national laboratories R & D efforts in smart sensors. Updated material also identifies the need for trusted sensing, the efforts of many organizations that impact smart sensing, and more. Utilizing the latest in smart sensor, microelectromechanical systems (MEMS) and microelectronic research and development, you get the technical and practical information you need keep your designs and products on the cutting edge. Plus, you see how network (wired and wireless) connectivity continues to impact smart sensor development. By combining information on micromachining and microelectronics, this is the first book that links these two important aspects of smart sensor technology so you don t have to keep multiple references on hand. This comprehensive resource also includes an extensive list of smart sensor acronyms and a glossary of key terms. With an effective blend of historical information and the latest content, the third edition of Understanding Smart Sensors provides a unique combination of foundational and future-changing information.
|
Subject
|
:
|
Application-specific integrated circuits.
|
Subject
|
:
|
Detectors-- Design and construction.
|
Subject
|
:
|
Programmable controllers.
|
Subject
|
:
|
Semiconductors.
|
Subject
|
:
|
Signal processing-- Digital techniques.
|
Subject
|
:
|
Application-specific integrated circuits.
|
Subject
|
:
|
Detectors-- Design and construction.
|
Subject
|
:
|
Programmable controllers.
|
Subject
|
:
|
Semiconductors.
|
Subject
|
:
|
Signal processing-- Digital techniques.
|
Subject
|
:
|
TECHNOLOGY ENGINEERING-- Technical Manufacturing Industries Trades.
|
Dewey Classification
|
:
|
681.2
|
LC Classification
|
:
|
TA165.F724 2013eb
|